
0

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Coverage

3.3 Vulnerability Information

4 Findings

4.1 Visibility Description

4.2 Vulnerability Summary

5 Audit Result

6 Statement

1

1 Executive Summary

On 2022.06.06, the SlowMist security team received the TON team's security audit application for TON, developed

the audit plan according to the agreement of both parties and the characteristics of the project, and finally issued the

security audit report.

The SlowMist security team adopts the strategy of "white box" to conduct a complete security test on the project in

the way closest to the real attack.

The test method information:

Test method Description

Black box
testing

Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project party should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

2

Level Description

Suggestion There are better practices for coding or architecture.

In black box testing and gray box testing, we use methods such as fuzz testing and script testing to test the

robustness of the interface or the stability of the components by feeding random data or constructing data with a

specific structure, and to mine some boundaries Abnormal performance of the system under conditions such as

bugs or abnormal performance. In white box testing, we use methods such as code review, combined with the

relevant experience accumulated by the security team on known blockchain security vulnerabilities, to analyze the

object definition and logic implementation of the code to ensure that the code has the key components of the key

logic. Realize no known vulnerabilities; at the same time, enter the vulnerability mining mode for new scenarios and

new technologies, and find possible 0day errors.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated

analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

NO. Audit Items Result

1 Others Passed

2 State Consistency Audit Some Risks

3

NO. Audit Items Result

3 Failure Rollback Audit Passed

4 Unit Test Audit Some Risks

5 Integer Overflow Audit Some Risks

6 Parameter Verification Audit Passed

7 Error Unhandle Audit Passed

8 Boundary Check Audit Some Risks

9 SAST Passed

3 Project Overview

3.1 Project Introduction

TON is the next gen network to unite all blockchains and the existing Internet.

3.2 Coverage

Target Code and Revision:

https://github.com/newton-blockchain/ton/tree/master/catchain

Commit: ae5c0720143e231c32c3d2034cfe4e533a16d969

https://github.com/newton-blockchain/ton/tree/master/validator-session

Commit: ae5c0720143e231c32c3d2034cfe4e533a16d969

https://github.com/newton-blockchain/ton/tree/master/validator-engine

Commit: ae5c0720143e231c32c3d2034cfe4e533a16d969

4

3.3 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1 Lack of unit testing Unit Test Audit Low Confirming

N2 Overflow risks Integer Overflow Audit Suggestion Confirming

N3
Divisor not
checked

Boundary Check Audit Suggestion Confirming

N4 Using system time
State Consistency

Audit
Low Confirming

4 Findings

4.1 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

4.2 Vulnerability Summary

[N1] [Low] Lack of unit testing

Category: Unit Test Audit

Content

catchain/catchain-block.cpp

catchain/catchain-block.hpp

catchain/catchain-received-block.cpp

catchain/catchain-received-block.h

5

catchain/catchain-received-block.hpp

catchain/catchain-receiver-interface.h

catchain/catchain-receiver-source.cpp

catchain/catchain-receiver-source.h

catchain/catchain-receiver-source.hpp

catchain/catchain-receiver.cpp

catchain/catchain-receiver.h

catchain/catchain-receiver.hpp

catchain/catchain-types.h

catchain/catchain.cpp

catchain/catchain.h

catchain/catchain.hpp

validator-engine/validator-engine.hpp

validator-engine/validator-engine.cpp

validator-session/persistent-vector.cpp

validator-session/persistent-vector.h

validator-session/validator-session-description.cpp

validator-session/validator-session-description.h

validator-session/validator-session-description.hpp

validator-session/validator-session-state.cpp

validator-session/validator-session-state.h

validator-session/validator-session-types.h

validator-session/validator-session.cpp

validator-session/validator-session.h

validator-session/validator-session.hpp

6

Unit test coverage is too low (~0%).

Unit testing is critical to ensure that a product or functionality will perform even after a change.

Solution

Increase the coverage of unit testing

Status

Confirming

[N2] [Suggestion] Overflow risks

Category: Integer Overflow Audit

Content

Use +-*/ for arithmetic operations, risk of numerical overflow.

Solution

Using safemath function for arithmetic operations.

Status

Confirming

[N3] [Suggestion] Divisor not checked

Category: Boundary Check Audit

Content

td::uint32 size() const {

 return static_cast<td::uint32>(data_size_ / sizeof(T));

}

td::uint32 size() const {

 return static_cast<td::int32>(data_size_ / sizeof(T));

}

* validator-session/validator-session-description.cpp

validator-session/persistent-vector.h

7


```c++ 

//#L176 

return static_cast<void *>(pdata_perm_[s / pdata_perm_size_] + (s % 

pdata_perm_size_)); 

  td::uint32 get_attempt_seqno(td::uint64 ts) const override { 

    return get_unixtime(ts) / opts_.round_attempt_duration; 

  } 

double lambda = 10.0 / description().get_total_nodes(); 

Failure to check if the divisor is zero. 

Solution 

check if the divisor is zero. 

Status 

Confirming

[N4] [Low] Using system time

Category: State Consistency Audit 

Content

//#L1675 

td::uint32 ts = static_cast<td::uint32>(td::Clocks::system()); 

 

//#L2318 

auto obj = ton::create_tl_object<ton::ton_api::engine_validator_time>

(static_cast<td::int32>(td::Clocks::system())); 

validator-session/validator-session-description.hpp

validator-session/validator-session-description.hpp

validator-engine/validator-engine.cpp

8



Using system time in the blockchain may cause inconsistent state among nodes. 

Solution 

Detecting the difference between system time and block time. 

Status 

Confirming

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002206270001 SlowMist Security Team 2022.06.06 - 2022.06.27 Passed

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 2 low risk, 2 suggestion vulnerabilities.

9



6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these. 

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

10



11


