
 TON Blockchain
 Final Report

 April 12, 2023

 Prepared for:

 Justin Hyun , Head of Incubation

 TON Foundation

 Prepared by: Henrik Brodin , Felipe Manzano , and Evan Sultanik

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 TON Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be business confidential information; it is
 licensed to TON Foundation under the terms of the project statement of work and
 intended solely for internal use by TON Foundation. Material within this report may not be
 reproduced or distributed in part or in whole without the express written permission of
 Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 TON Security Assessment
 CONFIDENTIAL

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Executive Summary 6
 Project Summary 8
 Project Goals 10
 Project Targets 11
 Project Coverage 12
 Automated Testing 13
 Codebase Maturity Evaluation 16
 Summary of Findings 19
 Detailed Findings 24

 1. Proxied ADNL pong messages may have empty data 24
 2. A block ID with no associated queue will cause a crash 25
 3. Token manager only checks every other download for timeouts 26
 4. FunC compiler will dereference an invalid pointer when output file is provided 27
 5. ListIterator postfix increment operator returns a local variable by reference 28
 6. TVM programs can trigger undefined behavior in bigint.hpp 29
 7. TVM programs can trigger undefined behavior in bitstring.cpp 36
 8. TVM programs can trigger undefined behavior in tonops.cpp 38
 9. TVM programs can trigger undefined behavior in CellBuilder.cpp 39
 10. Multiple Fift stack instructions fail to check the stack depth 41
 11. PUSHPOW2 opcode uses twice as much CPU time as opcodes with a similar gas
 cost 43
 12. Stack use-after-scope in tdutils test 44
 13. On-chain pseudorandom number generation 45
 15. VM state guards fail when not assigned to a variable 46
 16. Performance warning timers in the cell DB do not work 48
 17. DHT queries will crash if debug logging is enabled 49
 18. Frequent connection state changes can cause an ADNL node to exhaust memory
 51
 19. Missing base copy constructor invocation in derived copy constructor 53
 20. Unbounded storage of received Catchain blocks 56
 21. Getting account state can crash when building a state root proof 57

 Trail of Bits 3 TON Security Assessment
 CONFIDENTIAL

 22. Misaligned object allocation and interaction 58
 23. Use of DowncastHelper leads to invalid downcast of incorrect type 60
 24. Clock drift can break consensus 63
 25. Shard records can be instantiated with uninitialized member variables 64
 26. Signatures of block antecessors are not validated 65
 27. TLB reference validation can be bypassed 66
 28. The TON client’s get shards request can fail 67
 29. Bigint and cell tests can silently fail due to undefined behavior 69
 30. Multiplication of a constant can lead to a misaligned stack 71
 31. FunC codegen invokes undefined behavior 73
 32. Constant operations on NaN can cause the FunC compiler to crash 75
 33. Undefined variables in FunC are treated as undefined functions and do not
 cause a compiler error 76
 34. Calls to implicitly impure functions without a return value are always optimized
 out without an error 77
 35. Calls to implicitly impure functions with unused return values are always
 optimized out without an error 79
 36. Comparison to NaN results in the other comparand 81
 37. FunC fails to reject out-of-range constants 83
 38. Inconsistent runtime behavior for operations resulting in NaN 85
 39. Missing _Bit-marker for positive integer 1 88
 40. Method IDs can collide without warning 90
 41. Single-line comments are honored within multi-line comments 93
 42. Bitwise operators can cause the FunC compiler to crash 95
 43. FunC compiler can produce undefined opcodes 98
 44. Invalid syntax can cause the FunC compiler to crash 99
 45. Dictionary lookup can return incorrect results 101
 46. Dictionary insertion can inconsistently crash 103
 47. Bitwise negation of false is not always true 105
 48. Setting the random number seed from the FunC standard library causes a stack
 misalignment 107
 49. Querying a dictionary throws exception 109
 50. Compile time integer literal operations can result in unexpected control flow 111
 52. Ethereum bridge signature verification will always pass for address zero 114
 53. Context sensitivity of the ; token can lead to confusion and bugs 116

 Summary of Recommendations 118

 Trail of Bits 4 TON Security Assessment
 CONFIDENTIAL

 A. Vulnerability Categories 119
 B. Code Maturity Categories 121
 C. Code Quality Recommendations 123

 General recommendations 123
 D. Risks of Undefined Behavior in C++ 128

 Examples of Undefined Behavior 128
 How to Detect Undefined Behavior 129

 E. Automated Static Analysis 131
 Cppcheck 131

 F. Automated Dynamic Analysis 132
 Setting Up the Tests 136
 Measuring Coverage 136
 Integrating Fuzzing and Coverage Measurement into the Development Cycle 136
 Designing Testable Systems 137
 Identifying Properties and Choosing Their Test Methods 137
 Automated FunC Test Case Generation 138

 Differential testing by optimization level 138
 Verifying results according to a model 145

 G. Compiler Mitigations 154
 H. Opcode Timing and Gas Analysis 158
 I. Method ID Collisions 162
 J. Fix Review Results 167

 Detailed Fix Review Results 172

 Trail of Bits 5 TON Security Assessment
 CONFIDENTIAL

 Executive Summary

 Engagement Overview
 TON Foundation engaged Trail of Bits to review the security of its TON blockchain. This
 consisted of reviews of the TON Virtual Machine (TVM), Fift scripting language, FunC smart
 contract programming language, Catchain consensus protocol, election contract, and smart
 contract bridge. From July 5 to October 28, 2022, a team of three consultants conducted a
 security review of the client-provided source code, with 24 person-weeks of effort. Details
 of the project’s timeline, test targets, and coverage are provided in subsequent sections of
 this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with full knowledge of the target system, including access to the source code,
 documentation, and a test network. We performed static and dynamic testing of the target
 system and its codebase, using both automated and manual processes.

 Summary of Findings
 The audit uncovered significant flaws that could impact system confidentiality, integrity, or
 availability. A summary of the findings and details on notable findings are provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 13

 Medium 5

 Low 17

 Informational 12

 Undetermined 4

 CATEGORY BREAKDOWN

 Category Count

 Data Exposure 1

 Data Validation 16

 Denial of Service 6

 Error Reporting 4

 Timing 3

 Undefined Behavior 21

 Trail of Bits 6 TON Security Assessment
 CONFIDENTIAL

 Notable Findings
 The majority of findings are related to undefined behavior introduced by bugs in the C++
 codebase, as well as lack of data validation. Significant flaws that impact system
 confidentiality, integrity, or availability are listed below.

 ● Findings TOB-TON-6 , 7 , 8 , and 9 are all related to undefined behavior in various TVM
 components that could lead to nondeterminism in the VM or even crashes due to
 crafted TVM opcode sequences.

 ● Findings TOB-TON-3 , 21 , 22 , and 23 could all result in undefined behavior in a TON
 node, causing, at a minimum, denial of service.

 ● Findings TOB-TON-30 , 36 , 45 , 46 , and 47 are all related to correct FunC code that
 will compile to semantically incorrect TVM code—i.e., FunC code that will behave
 differently than how the programmer specified.

 Trail of Bits 7 TON Security Assessment
 CONFIDENTIAL

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Sam Greenup , Project Manager (First Half)
 dan@trailofbits.com sam.greenup@trailofbits.com

 Anne Marie Barry , Project Manager (Second Half)
 annemarie.barry@trailofbits.com

 The following engineers were associated with this project:

 Henrik Brodin , Consultant Felipe Manzano , Consultant
 henrik.brodin@trailofbits.com felipe.manzano@trailofbits.com

 Evan Sultanik , Consultant
 evan.sultanik@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 June 30, 2022 Phase I (TVM and Fift) kickoff call

 July 11, 2022 Status report #1

 July 18, 2022 Status report #2

 July 25, 2022 Status report #3

 July 29, 2022 Status report #4

 August 15, 2022 Phase II (Consensus) kickoff call

 August 22, 2022 Status report #5

 August 29, 2022 Status report #6

 September 6, 2022 Status report #7

 September 12, 2022 Status report #8

 Trail of Bits 8 TON Security Assessment
 CONFIDENTIAL

mailto:dan@trailofbits.com
mailto:sam.greenup@trailofbits.com
mailto:annemarie.barry@trailofbits.com
mailto:henrik.brodin@trailofbits.com
mailto:felipe.manzano@trailofbits.com
mailto:evan.sultanik@trailofbits.com

 September 22, 2022 Phase III (FunC and the Bridge) kickoff call

 October 3, 2022 Status update meeting #9

 October 11, 2022 Status update meeting #10

 October 14, 2022 Bridge code furnished to Trail of Bits

 October 24, 2022 Status update meeting #11

 October 31, 2022 Delivery of draft final report

 October 31, 2022 Final status update

 January 10, 2023 Delivery of final report

 March 27, 2023 Fix review commenced

 April 12, 2023 Delivery of fix review

 Trail of Bits 9 TON Security Assessment
 CONFIDENTIAL

 Project Goals

 The engagement was scoped to provide a security assessment of the TON TVM and Fift.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Can a maliciously crafted TVM bytecode program or Fift script cause a node to
 crash?

 ● Can a maliciously crafted TVM bytecode program, Fift script, or FunC contract cause
 a node to expend more computational resources than the gas cost?

 ● Are TVM programs, Fift scripts, and FunC contracts deterministic?

 ● Can a maliciously crafted TVM bytecode program, Fift script, or FunC contract be
 exploited to gain arbitrary code execution?

 ● Is the bytecode resulting from the compilation of FunC contracts semantically
 equivalent regardless of optimization level?

 ● Are the cryptographic primitives sound?

 ● Can a malicious node or minority coalition of nodes perform a denial-of-service
 attack on the network?

 ● Are there any flaws in the bridge contracts that would allow an attacker to freeze or
 steal funds?

 Trail of Bits 10 TON Security Assessment
 CONFIDENTIAL

 Project Targets

 The engagement involved a review and testing of the following target.

 TON Monorepo Containing Fift and the TVM

 Repository https://github.com/ton-blockchain/ton/

 Version eb86234a1120fc3f9c6b390f4471cfd92b875044

 Type Smart Contract Virtual Machine and Programming Language

 Platform C++

 TON Monorepo Containing the Catchain and Validator Implementations

 Repository https://github.com/ton-blockchain/ton/

 Version 36fbe3a2acda90fb92826b114e71ac08a8e53438

 Type Consensus Protocol and Blockchain Verifier

 Platform C++

 TON Monorepo Containing the FunC Compiler

 Repository https://github.com/ton-blockchain/ton/

 Version 4b940f8bad9c2d3bf44f196f6995963c7cee9cc3

 Type FunC Compiler

 Platform C++, FunC, and Fift

 TON Bridge FunC Contracts

 Repository https://github.com/ton-blockchain/bridge-func

 Version d03dbdbe9236e01efe7f5d344831bf770ac4c613

 Type FunC Smart Contracts

 Platform FunC and Fift

 TON Bridge Solidity Contracts

 Repository https://github.com/ton-blockchain/bridge-solidity

 Version c5f51c1f40620ca3473788a203a387caed1e0897

 Type Solidity Smart Contracts

 Platform Solidity

 Trail of Bits 11 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/tree/eb86234a1120fc3f9c6b390f4471cfd92b875044
https://github.com/ton-blockchain/ton/tree/36fbe3a2acda90fb92826b114e71ac08a8e53438
https://github.com/ton-blockchain/ton/tree/36fbe3a2acda90fb92826b114e71ac08a8e53438
https://github.com/ton-blockchain/bridge-func
https://github.com/ton-blockchain/bridge-solidity

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches include the following:

 ● Static analysis of the entire TON monorepo

 ● Manual review of the TVM, Fift interpreter, FunC compiler, Catchain consensus
 protocol, validator, election contract, and smart contract bridge

 ● Fuzz testing of the bag of cells data structure, TVM opcodes, and FunC compiler

 ● Differential testing of the FunC compiler

 ● Opcode benchmarking (CPU time versus gas cost)

 ● In vivo testing via MyLocalTon

 ● Evaluation of clock drifting robustness using MyLocalTon with custom binaries

 ● Verification of serialization/deserialization of BlockSignatureSet

 ● FunC code and test case generation to identify incorrect code generation

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● The TVM has thousands of unique opcode variants, of which we were able to test
 only a small fraction. We observed that many opcodes of the same family have
 different runtimes depending on their constant arguments (see TOB-TON-11). We
 have included our test code in Appendix H . Benchmarking of the entire set of
 opcodes would be beneficial.

 ● The codebase would benefit from additional fuzz test harnesses (e.g., in the
 validator and FunC smart contract compiler). See Appendix F .

 ● Several findings have the potential to be high severity, but are currently classified
 with undetermined severity because there was insufficient time to confirm that they
 are exploitable with a proof of concept.

 ● Due to a delay in receiving the final version of the code, the bridge contracts were
 assessed only during the last calendar week of the assessment.

 Trail of Bits 12 TON Security Assessment
 CONFIDENTIAL

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description Policy

 Cppcheck Cppcheck is a static analysis tool for C/C++ code. It provides
 unique code analysis to detect bugs and focuses on
 detecting undefined behavior and dangerous coding
 constructs.

 Appendix E

 LLVM
 Sanitizers

 Compile-time passes that add instrumentation to detect
 address misuse (ASAN), memory safety issues (MSAN), and
 undefined behavior (UBSAN) at runtime.

 Appendix D
 and Appendix F

 LibFuzzer An in-process, coverage-guided, evolutionary fuzzing
 engine. LibFuzzer can automatically generate a set of inputs
 that exercise as many code paths in the program as
 possible.

 Appendix F

 test-timing A custom utility that benchmarks TVM opcodes and
 compares their CPU usage against their gas cost.

 Appendix H

 FunC
 differential
 testing

 Tool that constructs FunC expressions and evaluates
 equality for different optimization levels.

 Appendix F

 FunC model
 verification

 Tool that constructs FunC expressions and evaluates
 equality to a Python-based model.

 Appendix F

 Trail of Bits 13 TON Security Assessment
 CONFIDENTIAL

 Slither Static analyzer that scans Ethereum smart contracts for
 known-vulnerable patterns.
 https://github.com/crytic/slither

 Public and
 Proprietary
 Vulnerability
 Detectors

 Areas of Focus
 Our automated testing and verification work focused on the following system properties:

 ● The program does not access invalid memory addresses.

 ● The program does not exercise undefined behavior.

 ● TVM opcodes consume computational resources proportional to their gas costs.

 ● The Ethereum bridge contracts do not contain any known-vulnerable patterns.

 Test Results
 The results of this focused testing are detailed below.

 Property Tool Result

 BagOfCell_deserialize . Randomly generated data fed to
 Vm::BagOfCell::deserialize() will not trigger memory
 safety, undefined behavior, or abrupt termination errors.

 LibFuzzer Passed

 run_vm_code. Randomly generated cells fed to
 Vm::run_vm_code will not trigger memory safety, undefined
 behavior, or abrupt termination errors.

 LibFuzzer TOB-TON-6 ,
 7 , 8 , and 9

 run_vm_code_specific . Randomly generated cells containing
 valid instructions fed to Vm::run_vm_code will not trigger
 memory safety, undefined behavior, or abrupt termination
 errors.

 LibFuzzer Passed

 Test-timing. TVM opcodes consume computational resources
 commensurate with their gas cost.

 test-timing TOB-TON-11

 Trail of Bits 14 TON Security Assessment
 CONFIDENTIAL

 FunC differential testing. Randomly created expressions
 evaluate to equal results regardless of optimization level.

 FunC
 differential
 testing

 TOB-TON-30

 FunC correctness testing. Randomly created expressions
 evaluate to the result of a Python-based model.

 FunC model
 verification

 TOB-TON-32 ,
 36 , 37 , 38 ,
 42 , 43 , and
 47

 Ethereum bridge contracts. Tested the Ethereum smart
 contracts for known vulnerable patterns using both Trail of
 Bits’ public and proprietary detectors.

 Slither Passed

 Trail of Bits 15 TON Security Assessment
 CONFIDENTIAL

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic Several high-severity findings related to arithmetic errors:
 improper bit shifting of negative values and signed
 integer overflow.

 Weak

 Auditing The TVM and Fift have robust logging and debugging
 capabilities. However, a few findings (TOB-TON-33 , 34 ,
 35 , and 53) relate to inadequate or missing FunC
 compiler warnings or errors.

 Moderate

 Authentication /
 Access Controls

 The primary component of the system with
 authentication and access controls assessed in the scope
 of this engagement was the bridge. This was assessed for
 only one week, resulting in no findings related to
 authentication.

 Anyone with access to the TON GitHub organization or
 repositories could surreptitiously introduce malicious
 changes into the codebase. The access controls
 surrounding TON’s GitHub infrastructure were not
 assessed during this engagement.

 Further
 Investigation
 Required

 Complexity
 Management

 Although the codebase is well organized, a lack of inline
 documentation and IDE’s inability to resolve virtual
 methods in all contexts sometimes hindered manual
 code review. However, we identified several utilities
 required to successfully develop with TON
 (e.g., MyLocalTon and toncli) distributed across
 unofficial, personal GitHub repositories.

 Moderate

 Trail of Bits 16 TON Security Assessment
 CONFIDENTIAL

https://github.com/neodiX42/MyLocalTon
https://github.com/disintar/toncli

 Configuration The TVM has many configuration options. Discovering the
 purpose of these options and/or the units of their values
 was often possible only by inspecting the code.

 Moderate

 Cryptography
 and Key
 Management

 We did not discover any cryptographic flaws in the
 system; however, we recommend against allowing
 pseudorandom numbers to be generated on-chain
 (see TOB-TON-13). Several deprecated cryptographic
 functions from the OpenSSL library are used, but they do
 not appear to be exploitable (see Appendix C).

 Satisfactory

 Data Handling Several inputs were discovered that could cause the func
 compiler to crash; however, these did not result in
 high-severity security issues. The system as a whole could
 be improved by including property-based or fuzz tests to
 exercise unintended inputs (see Appendix F).

 Satisfactory

 Decentralization Several findings could produce nondeterminism in the
 TVM, leading to consensus issues (e.g., TOB-TON-24).
 However, these findings were not directly exploitable.

 Satisfactory

 Documentation The high-level documentation about the TON blockchain,
 the TVM, and Fift is excellent. However, the codebase
 could benefit from more inline comments. The
 documentation on the FunC language is also imprecise.
 For example, it is unclear whether mixed bit-length
 dictionary operations are intended (see TOB-TON-45 , 46 ,
 and 49).

 Moderate

 Maintenance This assessment did not assess the maintenance of the
 codebase or its deployments.

 Not
 Considered

 Memory Safety
 and Error
 Handling

 Several findings resulted from memory safety errors.
 Although tools such as the Address Sanitizer (asan) could
 detect many of these errors, TON cannot be built with
 asan enabled without disabling some checks (see the
 General Recommendations section of Appendix C).

 Weak

 Trail of Bits 17 TON Security Assessment
 CONFIDENTIAL

https://clang.llvm.org/docs/AddressSanitizer.html

 Testing and
 Verification

 Some TVM opcodes have no unit test coverage. There is
 no comprehensive testing of the correctness of Fift code
 emitted by the FunC compiler. There are no integrated
 testing harnesses in the TON repository itself, preventing
 testing the system in a simulated network with the
 consensus protocol running. The codebase has no
 automated property-based testing, fuzz testing, or formal
 verification. We recommend updating the codebase to
 resolve all issues that lead to current compiler warnings,
 or to suppress warnings that are known to be false
 positives (see Appendix G).

 Weak

 Trail of Bits 18 TON Security Assessment
 CONFIDENTIAL

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Proxied ADNL pong messages may have empty
 data

 Undefined
 Behavior

 Informational

 2 A block ID with no associated queue will cause a
 crash

 Denial of Service Informational

 3 Token manager only checks every other download
 for timeouts

 Denial of Service High

 4 FunC compiler will dereference an invalid pointer
 when output file is provided

 Denial of Service Low

 5 ListIterator postfix increment operator returns a
 local variable by reference

 Undefined
 Behavior

 Undetermined

 6 TVM programs can trigger undefined behavior in
 bigint.hpp

 Undefined
 Behavior

 High

 7 TVM programs can trigger undefined behavior in
 bitstring.cpp

 Undefined
 Behavior

 High

 8 TVM programs can trigger undefined behavior in
 tonops.cpp

 Undefined
 Behavior

 High

 9 TVM programs can trigger undefined behavior in
 CellBuilder.cpp

 Undefined
 Behavior

 High

 10 Multiple Fift stack instructions fail to check the
 stack depth

 Undefined
 Behavior

 Low

 11 PUSHPOW2 opcode uses twice as much CPU time
 as opcodes with a similar gas cost

 Denial of Service Low

 Trail of Bits 19 TON Security Assessment
 CONFIDENTIAL

 12 Stack use-after-scope in tdutils test Undefined
 Behavior

 Informational

 13 On-chain pseudorandom number generation Data Exposure Informational

 14 Retracted as a result of further investigation during the fix review * Undetermined

 15 VM state guards fail when not assigned to a
 variable

 Timing Low

 16 Performance warning timers in the cell DB do not
 work

 Timing Low

 17 DHT queries will crash if debug logging is enabled Undefined
 Behavior

 Low

 18 Frequent connection state changes can cause an
 ADNL node to exhaust memory

 Denial of Service Informational

 19 Missing base copy constructor invocation in
 derived copy constructor

 Undefined
 Behavior

 Informational

 20 Unbounded storage of received Catchain blocks Denial of Service Informational

 21 Getting account state can crash when building a
 state root proof

 Undefined
 Behavior

 High

 22 Misaligned object allocation and interaction Undefined
 Behavior

 High

 23 Use of DowncastHelper leads to invalid downcast
 of incorrect type

 Undefined
 Behavior

 High

 24 Clock drift can break consensus Timing Informational

 25 Shard records can be instantiated with
 uninitialized member variables

 Undefined
 Behavior

 Undetermined

 Trail of Bits 20 TON Security Assessment
 CONFIDENTIAL

 26 Signatures of block antecessors are not validated Data Validation Undetermined

 27 TLB reference validation can be bypassed Data Validation Undetermined

 28 The TON client’s get shards request can fail Undefined
 Behavior

 Low

 29 Bigint and cell tests can silently fail due to
 undefined behavior

 Undefined
 Behavior

 Low

 30 Multiplication of a constant can lead to a
 misaligned stack

 Data Validation High

 31 FunC codegen invokes undefined behavior Undefined
 Behavior

 Medium

 32 Constant operations on NaN can cause the FunC
 compiler to crash

 Undefined
 Behavior

 Low

 33 Undefined variables in FunC are treated as
 undefined functions and do not cause a compiler
 error

 Error Reporting Medium

 34 Calls to implicitly impure functions without a
 return value are always optimized out without an
 error

 Error Reporting Medium

 35 Calls to implicitly impure functions with unused
 return values are always optimized out without an
 error

 Error Reporting Informational

 36 Comparison to NaN results in the other
 comparand

 Data Validation High

 37 FunC fails to reject out-of-range constants Data Validation Low

 38 Inconsistent runtime behavior for operations
 resulting in NaN

 Data Validation Medium

 Trail of Bits 21 TON Security Assessment
 CONFIDENTIAL

 39 Missing _Bit-marker for positive integer 1 Data Validation Informational

 40 Method IDs can collide without warning Data Validation Low

 41 Single-line comments are honored within
 multi-line comments

 Data Validation Low

 42 Bitwise operators can cause the FunC compiler to
 crash

 Undefined
 Behavior

 Low

 43 FunC compiler can produce undefined opcodes Undefined
 Behavior

 Low

 44 Invalid syntax can cause the FunC compiler to
 crash

 Undefined
 Behavior

 Low

 45 Dictionary lookup can return incorrect results Data Validation High

 46 Dictionary insertion can inconsistently crash Data Validation High

 47 Bitwise negation of false is not always true Data Validation High

 48 Setting the random number seed from the FunC
 standard library causes a stack misalignment

 Data Validation Medium

 49 Querying a dictionary throws exception Data Validation Low

 50 Compile time integer literal operations can result
 in unexpected control flow

 Data Validation Low

 51 Retracted as a result of further investigation during the fix review * Undetermined

 52 Ethereum bridge signature verification will always
 pass for address zero

 Data Validation Informational

 Trail of Bits 22 TON Security Assessment
 CONFIDENTIAL

 53 Context sensitivity of the ; token can lead to
 confusion and bugs

 Error Reporting Informational

 54 Retracted as a result of further investigation during the fix review * Undetermined

 * These findings of undetermined severity had been previously reported in a provisional
 state. Further investigation during the fix review determined that these findings, as
 originally reported, were invalid. A discussion of the findings as well as relevant
 recommendations are included in appendix J . These entries remain as placeholders in
 order to preserve the previously reported finding IDs.

 Trail of Bits 23 TON Security Assessment
 CONFIDENTIAL

 Detailed Findings

 1. Proxied ADNL pong messages may have empty data

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-1

 Target: adnl/adnl-proxy.cpp

 Description
 The TON Abstract Datagram Network Layer (ADNL) protocol proxy incorrectly re-copies
 Pong control packet data to itself after having already been moved by std::move , as
 depicted in Figure 1.1. Although this is valid C++ code, after line 188 the data object will
 remain in an undefined state; the compiler has the option to erase its contents. Therefore,
 the second move on line 191 will potentially wipe p.data .

 188 p.data = std::move(data);
 189 p.adnl_start_time = start_time();
 190 p.seqno = out_seqno_;
 191 p.data = std::move(data);

 Figure 1.1: Duplicate move of the contents of data in adnl-proxy.cpp

 This finding is informational because Pong messages still function to keep a connection
 alive regardless of whether they contain a data payload.

 Exploit Scenario
 A TON node sends invalid Pong messages containing no data payload, causing the node to
 be disconnected from its peers.

 Recommendations
 Short term, remove the erroneous second move on line 191.

 Long term, integrate linting tools like cppcheck or clang-tidy into your CI pipeline that can
 detect use-after-move bugs.

 Trail of Bits 24 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/adnl/adnl-proxy.cpp#L188-L191
https://cppcheck.sourceforge.io/
https://clang.llvm.org/extra/clang-tidy/

 2. A block ID with no associated queue will cause a crash

 Severity: Informational Difficulty: Medium

 Type: Denial of Service Finding ID: TOB-TON-2

 Target: crypto/block/block-db.cpp

 Description
 Obtaining queue information for an invalid block ID leads to an invalid iterator access. It
 appears that a return statement was intended but omitted between lines 668 and 669 of
 block-db.cpp :

 666 if (it == state_info.end()) {
 667 promise(td::Status::Error(
 668 -666 , std::string{ "cannot obtain output queue info for block " } +

 blk_id.to_str() + " : cannot load state"));
 669 }
 670 if (it->second->data.is_null()) {

 Figure 2.1: Missing return statement before line 670 results in an invalid iterator access

 Since the error handling code inside the if block will fall through, the it iterator will be
 invalid when it is dereferenced on line 670, causing a segfault.

 This finding is informational because it does not appear that the
 BlockDbImpl::get_out_queue_info_by_id function containing this bug is actually
 called anywhere in the code. However, if a code path that reaches this function exists, the
 severity of this finding would be high.

 Exploit Scenario
 A code path reaches this function to retrieve queue information for a block specified in an
 ADNL message. A malicious node crafts an ADNL message containing a nonexistent block
 ID, causing all of its peers to crash.

 Recommendations
 Short term, add a return statement between lines 668 and 669.

 Long term, determine whether this code is actually used and, if not, consider removing it.

 Trail of Bits 25 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/block/block-db.cpp#L666-L670

 3. Token manager only checks every other download for timeouts

 Severity: High Difficulty: Low

 Type: Denial of Service Finding ID: TOB-TON-3

 Target: validator/token-manager.cpp

 Description
 Each actor’s token manager periodically checks if its pending token downloads have timed
 out. The loop that iterates over the pending downloads follows in Figure 3.1.

 70 for (auto it = pending_.begin(); it != pending_.end(); it++) {
 71 if (it->second.timeout.is_in_past()) {
 72 it->second.promise.set_error(td::Status::Error(ErrorCode::timeout,

 "timeout in wait download token"));
 73 auto it2 = it++;
 74 pending_.erase(it2);
 75 } else {
 76 it++;
 77 }
 78 }

 Figure 3.1: The iterator will be incremented twice in each for loop, skipping every other entry.

 Note that the iterator is incremented twice: once in the for loop on line 70 , and again in
 each branch of the if statement on lines 73 and 76. If the last element in the pending_
 mapping is timed out, then the second iterator increment will proceed past the end of the
 mapping.

 Exploit Scenario
 A validator with a poor network connection has many token download timeouts. If the
 timeouts occur more frequently than the call to the promise cleanup loop from Figure 3.1,
 then the pending token download queue will have unbounded increase. The last pending
 token promise times out, incrementing the iterator past the end of the mapping, accessing
 invalid memory and causing the validator to crash.

 Recommendations
 Short term, remove the unnecessary increment in the for loop on line 70.

 Long term, integrate linting tools like cppcheck or clang-tidy into your CI pipeline that can
 detect improper iterator incrementing.

 Trail of Bits 26 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/validator/token-manager.cpp#L70-L78
https://cppcheck.sourceforge.io/
https://clang.llvm.org/extra/clang-tidy/

 4. FunC compiler will dereference an invalid pointer when output file is
 provided

 Severity: Low Difficulty: Low

 Type: Denial of Service Finding ID: TOB-TON-4

 Target: crypto/func/func.cpp

 Description
 The func program will dereference an uninitialized unique pointer if an output filename is
 provided rather than printing to STDOUT .

 271 std::unique_ptr<std::fstream> fs;
 272 if (!output_filename.empty()) {
 273 fs = std::make_unique<std::fstream>(output_filename, fs->trunc | fs->out);

 Figure 4.1: The unique pointer is dereferenced before being initialized.

 On line 273 , the fs pointer is dereferenced twice before it is initialized.

 Exploit Scenario
 The func utility is invoked automatically with a filename specified (e.g., in a contract
 verification app similar to Etherscan). The utility crashes due to the invalid pointer
 dereference.

 Recommendations
 Short term, remove the invalid dereferences.

 Long term, add integration tests to your CI pipeline to test all arguments of the
 command-line interfaces.

 Trail of Bits 27 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/func/func.cpp#L271-L273

 5. ListIterator postfix increment operator returns a local variable by reference

 Severity: Undetermined Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-5

 Target: crypto/func/func.h

 Description
 ListIterator is a utility class that wraps C style arrays and makes them easily iterable. Its
 postfix increment operator returns a local variable by reference.

 As shown below on line 503 , a new stack variable is returned by reference, which produces
 undefined behavior in C++.

 500 ListIterator& operator ++(int) {
 501 T* z = ptr;
 502 ptr = ptr->next.get();
 503 return ListIterator{z};
 504 }

 Figure 5.1: The return-by-reference value for the postfix increment operator is a local variable.

 The severity of this issue is undetermined because we did not exhaustively evaluate all
 uses of ListIterator for vulnerability to this bug.

 Exploit Scenario
 A list iterator is postfix-incremented and assigned to a new variable. The resulting variable
 will be an invalid reference and likely segfault on any member access or operation.

 Recommendations
 Short term, change the return type of the postfix operator to be a value rather than a
 reference.

 Long term, integrate linting tools like cppcheck or clang-tidy into your CI pipeline that can
 detect stale reference bugs.

 Trail of Bits 28 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/func/func.h#L500-L504
https://cppcheck.sourceforge.io/
https://clang.llvm.org/extra/clang-tidy/

 6. TVM programs can trigger undefined behavior in bigint.hpp

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-6

 Target: crypto/common/bigint.hpp

 Description
 The sequences of TVM operations shown in figures 6.1–6.22 trigger undefined behavior in
 crypto/common/bigint.hpp .

 Executing code with undefined behavior in C++ allows the compiler to emit any and all
 possible code. Although the program may seem to work as expected, results will often
 differ depending on factors such as compiler choice, options, and execution environment.
 For example, compilers will often silently optimize away code that it can prove could
 execute undefined behavior. Appendix D provides a more in-depth discussion of undefined
 behavior and provides real-world examples and our general recommendations for
 addressing it.

 Examples of TVM code that triggers undefined behavior are provided below. Each example
 can be triggered by running the following:

 echo '2 3 1 1 29 12 x{aabbccdd} runvmcode .s'
 |UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=
 1 crypto/fift -I ../crypto/fift/lib/ -i

 where aabbccdd is replaced with the corresponding TVM code. Assuming Fift is built with
 Undefined Behavior Sanitizer (ubsan) support, the program terminates with an error
 indicating the undefined behavior.

 On line 323 , the computation of x + Tr::Half can trigger a signed integer overflow.

 322 } else {
 323 digits[0] = ((x + Tr::Half) & (Tr::Base - 1)) - Tr::Half;
 324 digits[n++] = (x >> Tr::word_shift) + (digits[0] < 0);
 325 }

 Figure 6.1: Undefined behavior can be invoked on line 323.
 (crypto/common/bigint.hpp#322–325)

 Trail of Bits 29 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L323
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L322-L325

 762 auto dm = std::div(exponent, word_shift);
 763 int k = dm.quot;
 764 while (size() <= k) {
 765 digits[inc_size()] = 0 ;
 766 }
 767 digits[k] += ((word_t)factor << dm.rem);

 Figure 6.2: Undefined behavior can be invoked on line 767.

 On line 767 , the computation (word_t)factor << dm.rem triggers a left shift of negative
 value -1. TVM code to trigger: 762020a9a9 .

 967 word_t hi = 0 ;
 968 Tr::add_mul(&hi, &digits[i + j], yv, zp.digits[j]);
 969 if (hi && hi != -1) {
 970 return invalidate_bool();
 971 }
 972 digits[size() - 1] += (hi << word_shift);

 Figure 6.3: Undefined behavior can be invoked on line 972.

 On line 972 , the computation hi << word_shift triggers a left shift of negative value -1.
 TVM code to trigger: 85f87ca87ca8 .

 1008 word_t v = digits[size() - 1];
 1009 if (size() >= 2) {
 1010 if (v >= Tr::MaxDenorm) {
 1011 return 1 ;
 1012 } else if (v <= -Tr::MaxDenorm) {
 1013 return -1 ;
 1014 }
 1015 int i = size() - 2 ;
 1016 do {
 1017 v <<= word_shift;

 Figure 6.4: Undefined behavior can be invoked on line 1017.

 On line 1017 , the computation hi << word_shift triggers a left shift of negative value -8.
 TVM code to trigger: c8cf37c8cf37e317a9de2e .

 1062 word_t v = digits[0] + (digits[1] << word_shift); // approximation mod
 2^64

 Figure 6.5: Undefined behavior can be invoked on line 1062.

 On line 1062 , the computation digits[0] + (digits[1] << word_shift) triggers
 signed integer overflow because -1 + -9223372036854775808 cannot be represented in
 type 'long long'.
 TVM code to trigger: 843ee5 .

 Trail of Bits 30 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L762-L767
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L967-L972
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1008-L1017
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1062

 1062 word_t v = digits[0] + (digits[1] << word_shift); // approximation mod
 2^64

 Figure 6.6: Undefined behavior can be invoked on line 1062.

 Also on line 1062 , the computation digits[0] + (digits[1] << word_shift)
 performs a left shift of 4096 by 52 places, which cannot be represented in type 'long long'.
 TVM code to trigger: 76aeaeae .

 1133 v = -yp.digits[--yn];
 1134 if (v >= Tr::MaxDenorm) {
 1135 return 1 ;
 1136 } else if (v <= -Tr::MaxDenorm) {
 1137 return -1 ;
 1138 }
 1139 while (yn > xn) {
 1140 v <<= word_shift;

 Figure 6.7: Undefined behavior can be invoked on line 1140.

 On line 1140 , the computation v <<= word_shift triggers a left shift of negative value -1.
 TVM code to trigger: 68839ba909 .

 1153 v <<= word_shift;

 Figure 6.8: Undefined behavior can be invoked on line 1153.

 On line 1153 , the computation v <<= word_shift triggers a left shift of negative value -1.
 TVM code to trigger: 68839ba9d9a4 .

 1354 digits[size() - 1] += (digits[size()] << word_shift);

 Figure 6.9: Undefined behavior can be invoked on line 1354.

 On line 1270 , the computation (z << word_shift) triggers a left shift of a negative
 value.

 1269 if (!z || z == -1) {
 1270 digits[size() - 1] += (z << word_shift);
 1271 return true ;
 1272 } else {

 Figure 6.10: Undefined behavior can be invoked on line 1270.
 (crypto/common/bigint.hpp#1269–1272)

 Trail of Bits 31 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1062
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1133-L1140
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1153
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1269-L1272
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1269-L1272

 On line 1341 , the computation of hi << word_shift can trigger a left shift of a negative
 value.

 1341 digits[size() - 1] += (hi << word_shift);

 Figure 6.11: Undefined behavior can be invoked on line 1341
 (crypto/common/bigint.hpp#1341)

 On line 1354 , the computation digits[size()] << word_shift triggers a left shift of
 negative value -1.
 TVM code to trigger: 85a0855fa9da0a .

 1458 word_t pow = ((word_t) 1 << q);
 1459 word_t v = digits[size() - 1] & (pow - 1);

 Figure 6.12: Undefined behavior can be invoked on line 1459.

 On line 1459 , the computation pow-1 triggers signed integer overflow because
 -9223372036854775808 - 1 cannot be represented in type 'long long'.
 TVM code to trigger: 74a93e3e .

 1626 digits[size() - 1] += (v << word_shift);

 Figure 6.13: Undefined behavior can be invoked on line 1626.

 On line 1488 , the computation v - (w << word_shift) can result in signed integer overflow
 (subtracting a large negative number originating from w << word_shift).

 1486 } else if (v >= Tr::Half && size() < max_size()) {
 1487 word_t w = (((v >> (word_shift - 1)) + 1) >> 1);
 1488 digits[size() - 1] = v - (w << word_shift);
 1489 digits[inc_size()] = w;
 1490 return true ;
 1491 } else {

 Figure 6.14: Undefined behavior can be invoked on line 1488.
 (crypto/common/bigint.hpp#1486–1491)

 On line 1626 , the computation v << word_shift triggers a left shift of negative value -1.
 TVM code to trigger: 7caaeb .

 1775 word_t q = digits[k];
 1776 if (k > 0 && q > -Tr::MaxDenorm / 2) {
 1777 q <<= word_shift;

 Figure 6.15: Undefined behavior can be invoked on line 1777.

 Trail of Bits 32 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1341
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1341
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1354
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1458-L1459
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1486-L1491
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1486-L1491
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1626

 On line 1769 , the computation q <<= word_shift can trigger a left shift of negative value
 -243.

 1763 while (k > 0) {
 1764 if (q >= Tr::MaxDenorm / 2) {
 1765 return s + 1 ;
 1766 } else if (q <= -Tr::MaxDenorm / 2) {
 1767 return s;
 1768 }
 1769 q <<= word_shift;
 1770 q += digits[--k];
 1771 }

 Figure 6.16: Undefined behavior can be invoked on line 1769
 (crypto/common/bigint.hpp#1763–1771)

 On line 1777 , the computation v << word_shift triggers a left shift of negative value -32.
 TVM code to trigger: 85a0b7b602 .

 1925 td::bitstring::bits_store_long_top(buff, offs, v << (64 - bits), bits);

 Figure 6.17: Undefined behavior can be invoked on line 1925.

 On line 1793 , the computation of q <<= word_shift can trigger a left shift of a negative
 value.

 1787 while (k > 0) {
 1788 if (q >= Tr::MaxDenorm / 2) {
 1789 return s;
 1790 } else if (q <= -Tr::MaxDenorm / 2) {
 1791 return s + 1 ;
 1792 }
 1793 q <<= word_shift;
 1794 q += digits[--k];
 1795 }

 Figure 6.18: Undefined behavior can be invoked on line 1793.
 (crypto/common/bigint.hpp#1787–1795)

 Trail of Bits 33 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1769
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1763-L1771
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1775-L1777
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1793
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1787-L1795

 On line 1830 , the computation v += (digits[i] << k); can trigger a left shift of a
 negative value.

 1829 } else {
 1830 v += (digits[i] << k);
 1831 k += word_shift;
 1832 }

 Figure 6.19: Undefined behavior can be invoked on line 1830
 (crypto/common/bigint.hpp#1829–1832)

 On line 1881 , the computation v += (digits[i] << k); can trigger a left shift of a negative value.

 1880 } else {
 1881 v += (digits[i] << k);
 1882 k += word_shift;
 1883 }

 Figure 6.20: Undefined behavior can be invoked on line 1881
 (crypto/common/bigint.hpp#1880–1883)

 On line 1925 , the computation v << (64 - bits) triggers a left shift of negative value -1.
 TVM code to trigger: c868a3fa03 .

 2045 unsigned long long val = td::bitstring::bits_load_long_top(buff, offs,
 bits);
 2046 if (sgnd) {
 2047 digits[0] = ((long long)val >> (64 - bits));
 2048 } else {
 2049 digits[0] = (val >> (64 - bits));

 Figure 6.21: Undefined behavior can be invoked on line 2049.

 On line 1966 , the computation v += (digits[i] << k); can trigger a left shift of a
 negative value.

 1965 } else {
 1966 v += (digits[i] << k);
 1967 k += word_shift;
 1968 }

 Figure 6.22: Undefined behavior can be invoked on line 1966
 (crypto/common/bigint.hpp#1965–1968)

 On line 2049 , the computation (val >> (64 - bits)) performs a right shift using shift
 exponent 64 which is too large for 64-bit type 'unsigned long long'.
 TVM code to trigger: ed45d0d712 .

 Trail of Bits 34 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1830
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1829-L1832
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1881
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1880-L1883
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1925
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1966
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bigint.hpp#L1965-L1968
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L2045-L2049

 Exploit Scenario
 Blockchain nodes running user-supplied TVM code behave differently when the undefined
 behavior is triggered, causing the network to lose consensus. Because undefined behavior
 can be triggered for very short instruction sequences, the attack need not be intentional.

 Recommendations
 Short term, consider switching to unsigned types with defined behavior for overflow and
 shifts and ensure that any out-of-range value cannot be produced.

 Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
 undefined behavior.

 Trail of Bits 35 TON Security Assessment
 CONFIDENTIAL

 7. TVM programs can trigger undefined behavior in bitstring.cpp

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-7

 Target: crypto/common/bitstring.cpp

 Description
 The sequences of TVM operations shown in figures 7.1–7.2 trigger undefined behavior in
 crypto/common/bitstring.cpp .

 Executing code with undefined behavior in C++ implies anything can happen. Although the
 code may seem to work as expected, results can differ depending on any factor.

 For example, when Fift is built with Undefined Behavior Sanitizer, the undefined behavior
 shown in figure 7.1 can be triggered by running the following:

 echo 'x{c8cf903f3f3f3f} runvmcode .s' |
 UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=1
 crypto/fift -I ../crypto/fift/lib/ -i

 193 if (b > 0) {
 194 *to = (unsigned char)((*to & (0xff >> b)) | ((int)acc << (8 - b)));
 195 }

 Figure 7.1: Undefined behavior can be invoked on line 194 of
 crypto/common/bitstring.cpp .

 On line 194 , the computation ((int)acc << (8 - b)) performs a left shift of value
 530554783 by 7 places. The result cannot be represented by type ‘int’.
 TVM code to trigger: c8cf903f3f3f3f .

 Additionally, lines 304 , 322 , and 330 of the bits_memscan function can all cause undefined
 behavior by shifting a negative value. This can be triggered by running the
 test-smartcont unit test.

 Furthermore, on line 508 , undefined behavior caused by a shift of 64 bits on a 64-bit type
 can happen when bits is 0.

 507 unsigned long long bits_load_ulong (ConstBitPtr from, unsigned bits) {

 Trail of Bits 36 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L193-L195
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L304
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L322
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L330
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bitstring.cpp#L508

 508 return bits_load_long_top(from, bits) >> (64 - bits);
 509 }

 Figure 7.2: Undefined behavior can be invoked on line 508 when bits is 0
 (crypto/common/bitstring.cpp#507–509)

 Exploit Scenario
 Blockchain nodes running user-supplied TVM code behave differently when the undefined
 behavior is triggered, causing the network to lose consensus. Because undefined behavior
 can be triggered for very short instruction sequences, the attack need not be intentional.

 Recommendations
 Short term, consider switching to unsigned types with defined behavior for overflow and
 shifts and ensure that any out-of-range value cannot be produced.

 Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
 undefined behavior.

 Trail of Bits 37 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/common/bitstring.cpp#L507-L509

 8. TVM programs can trigger undefined behavior in tonops.cpp

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-8

 Target: crypto/vm/tonops.cpp

 Description
 A sequence of TVM operations triggers undefined behavior in crypto/vm/tonops.cpp .

 Executing code with undefined behavior in C++ implies anything can happen. Although the
 code may seem to work as expected, results can differ depending on any factor.

 When Fift is build with Undefined Behavior Sanitizer, the below example can be triggered
 by running the following:

 echo 'x{c8853dfa02} runvmcode .s' |
 UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=1
 crypto/fift -I ../crypto/fift/lib/ -i

 475 auto x = stack.pop_int();
 476 auto cbr = stack.pop_builder();
 477 unsigned len = ((x->bit_size(sgnd) + 7) >> 3);

 Figure 8.1: Undefined behavior can be invoked on line 477 of crypto/vm/tonops.cpp .

 On line 477 , the computation (x->bit_size(sgnd) + 7) performs operation
 2147483647+7 which cannot be represented by type ‘int’.
 TVM code to trigger: c8853dfa02 .

 Exploit Scenario
 Blockchain nodes, running user-supplied TVM code, behave differently when the undefined
 behavior is triggered, causing the network to lose consensus. Because undefined behavior
 can be triggered for very short instruction sequences, the attack need not be intentional.

 Recommendations
 Short term, consider switching to unsigned types with defined behavior for overflow and
 shifts and ensure that any out-of-range value cannot be produced.

 Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
 undefined behavior.

 Trail of Bits 38 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/tonops.cpp#L475-L477

 9. TVM programs can trigger undefined behavior in CellBuilder.cpp

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-9

 Target: crypto/vm/cells/CellBuilder.cpp

 Description
 A sequence of TVM operations trigger undefined behavior in
 crypto/vm/cells/CellBuilder.cpp .

 Executing code with undefined behavior in C++ implies anything can happen. Although the
 code may seem to work as expected, results can differ depending on any factor.

 When Fift is built with the Undefined Behavior Sanitizer, the below example can be
 triggered by running the following:

 echo 'x{686fa1ed44d7395af43e} runvmcode .s' |
 UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=1
 crypto/fift -I ../crypto/fift/lib/ -i

 337 CellBuilder& CellBuilder::store_long (long long val, unsigned val_bits) {
 338 return store_long_top(val << (64 - val_bits), val_bits);
 339 }

 Figure 9.1: Undefined behavior can be invoked on line 338 of
 crypto/vm/cells/CellBuilder.cpp .

 On line 338 , the computation val << (64 - val_bits) performs a left shift of the
 negative value -2.

 TVM code to trigger: 686fa1ed44d7395af43e .

 Exploit Scenario
 Blockchain nodes running user-supplied TVM code behave differently when the undefined
 behavior is triggered, causing the network to lose consensus. Because undefined behavior
 can be triggered for very short instruction sequences, the attack need not be intentional.

 Recommendations
 Short term, consider switching to unsigned types with defined behavior for overflow and
 shifts and ensure that any out-of-range value cannot be produced.

 Trail of Bits 39 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/cells/CellBuilder.cpp#L337-L339

 Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
 undefined behavior.

 Trail of Bits 40 TON Security Assessment
 CONFIDENTIAL

 10. Multiple Fift stack instructions fail to check the stack depth

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-10

 Target: crypto/fift/words.cpp

 Description
 Fift is described as a multipurpose scripting language script, similar to Bash. It is therefore
 expected to gracefully handle unexpected input and error states. Certain stack
 manipulation methods in crypto/fift/stack.hpp:348 do not include an implicit stack
 underflow check to bail out in an orderly manner, resulting in undefined behavior and
 ultimately a crash. Callers of the stack API, such as in crypto/fift/words.cpp , are
 responsible for checking if the stack has enough values.

 Two Fift instructions fail to check the correct stack depth before being interpreted: EQV and
 EQV? . In these situations, an undefined behavior condition can be reached that causes the
 interpreter to crash and, at best, exit abruptly.

 1309 void interpret_is_eqv (vm::Stack& stack) {
 1310 auto y = stack.pop(), x = stack.pop();
 1311 stack.push_bool(are_eqv(std::move(x), std::move(y)));
 1312 }
 1313
 1314 void interpret_is_eq (vm::Stack& stack) {
 1315 auto y = stack.pop(), x = stack.pop();
 1316 stack.push_bool(x == y);
 1317 }

 Figure 10.1: Undefined behavior can be invoked because the stack size is unchecked for EQV and
 EQV. (crypto/fift/words.cpp#1309–1317)

 $ echo eq? eq? eqv? | catchsegv ./crypto/fift -I./crypto/fift/lib/ -i
 ok
 Segmentation fault (core dumped)
 *** Segmentation fault

 Figure 10.2: A reproducible EQV crash

 Exploit Scenario
 A Fift script in production contains code that does not properly check the stack depth,
 which causes the script to unexpectedly crash.

 Trail of Bits 41 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/fift/words.cpp#L1309-L1317

 Recommendations
 Short term, ensure that all uses of pop() in the Fift instruction handlers are interpreted on
 a stack of sufficient depth. Document the trust boundaries related to Fift scripts.

 Long term, integrate fuzzing of Fift with the Undefined Behavior Sanitizer (ubsan) enabled
 to detect undefined behavior.

 Trail of Bits 42 TON Security Assessment
 CONFIDENTIAL

 11. PUSHPOW2 opcode uses twice as much CPU time as opcodes with a similar
 gas cost

 Severity: Low Difficulty: Low

 Type: Denial of Service Finding ID: TOB-TON-11

 Target: crypto/vm/arithops.cpp

 Description
 The runtime of the PUSHPOW2 TVM opcode is not constant over all inputs. For example,

 [0xDF + 1] PUSHPOW2

 runs in 0.009ms, but

 [0x35 + 1] PUSHPOW2

 requires over twice as much CPU time at 0.021ms. Other opcodes that cost the same 26
 gas as PUSHPOW2 run significantly faster. For example, the DIVMOD opcode requires about
 0.006ms of CPU time.

 Exploit Scenario
 An attacker sends carefully crafted, low-gas transactions to the TON blockchain, causing
 validators to expend an inordinate amount of CPU time.

 Recommendations
 Short term, consider increasing the gas cost of the PUSHPOW2 opcode.

 Long term, continually benchmark the CPU overhead of each opcode. The time constraints
 of this assessment have not permitted us to test every possible combination of opcode and
 stack state. We have included our test harness in Appendix H , which can be extended by
 TON to benchmark all opcodes.

 Trail of Bits 43 TON Security Assessment
 CONFIDENTIAL

 12. Stack use-after-scope in tdutils test

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-12

 Target: tdutils/test/List.cpp

 Description
 On destruction of the test case in Figure 12.1 below, the destructors are run in reverse
 order. Therefore, id is destroyed before threads . At that point, a thread in threads could
 still be running with a reference to id .

 171 TEST(Misc, TsListConcurrent) {
 172 td::TsList<ListData> root;
 173 td::vector<td:: thread > threads;
 174 std::atomic<td::uint64> id{ 0 };
 175 for (std:: size_t i = 0 ; i < 4 ; i++) {
 176 threads.emplace_back(
 177 [&] { do_run_list_test<td::TsListNode<ListData>,
 td::TsList<ListData>, td::TsListNode<ListData>>(root, id); });
 178 }
 179 }

 Figure 12.1: The id variable will be destructed before threads .
 (tdutils/test/List.cpp#171–179)

 Exploit Scenario
 A thread increments id after it has been destructed. Since the memory is no longer
 associated with id , the increment will overwrite data for another object now occupying the
 same memory. This could lead to a crash or other undefined behavior.

 Recommendations
 Short term, reorder

 td::vector<td:: thread > threads;
 std::atomic<td::uint64> id{ 0 };

 to become

 std::atomic<td::uint64> id{ 0 };
 td::vector<td:: thread > threads;

 Long term, run all tests with the LLVM address sanitizer (asan) enabled.

 Trail of Bits 44 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/tdutils/test/List.cpp#L171-L179

 13. On-chain pseudorandom number generation

 Severity: Informational Difficulty: Low

 Type: Data Exposure Finding ID: TOB-TON-13

 Target: crypto/vm/tonops.cpp

 Description
 The TVM includes several opcodes for generating pseudorandom numbers on-chain. Since
 the entire chain is public and the TVM itself is deterministic, it is possible to predict the next
 random value with high accuracy, even if the pseudorandom number generator is seeded
 by the current time or block parameters as a source of entropy. This weakness has been
 thoroughly studied in Ethereum smart contracts .

 Exploit Scenario
 A malicious user exploits a lottery contract by predicting the winning value.

 Recommendations
 Short term, thoroughly document the risks of randomness without an external oracle.

 Long term, consider deprecating the opcodes related to random number generation.

 Trail of Bits 45 TON Security Assessment
 CONFIDENTIAL

https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620

 15. VM state guards fail when not assigned to a variable

 Severity: Low Difficulty: Low

 Type: Timing Finding ID: TOB-TON-15

 Target: crypto/vm/vm.cpp

 Description
 The VMStateInterface guard class uses the C++ idiom of Resource Acquisition Is
 Instantiation (RAII) to control the scope and lifetime of a guard. This is used, for example,
 when loading a library in order to prevent charging for cell load operations:

 597 Ref<Cell> VmState::load_library(td::ConstBitPtr hash) {
 598 std::unique_ptr<VmStateInterface> tmp_ctx;
 599 // install temporary dummy vm state interface to prevent charging for cell
 load operations during library lookup
 600 VmStateInterface::Guard(tmp_ctx.get());
 601 for (const auto & lib_collection : libraries) {
 602 auto lib = lookup_library_in(hash, lib_collection);
 603 if (lib.not_null()) {
 604 return lib;
 605 }
 606 }
 607 missing_library = hash;
 608 return {};
 609 }

 Figure 15.1: The guard object on line 600 will be immediately destructed after it is instantiated.
 (crypto/vm/vm.cpp#597–609)

 Note that on line 600, the guard is never assigned to a variable. In this case, the guard will
 be instantiated and immediately destructed before line 601 is executed. The example in
 Figure 15.2, the output of which is in Figure 15.3, verifies this behavior.

 #include <iostream>
 class Guard {
 public :
 int value;
 Guard(int val) : value(val) {
 std::cout << "Created " << value << std::endl;

 }
 ~Guard() {
 std::cout << "Destroyed " << value << std::endl;

 }

 Trail of Bits 46 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/vm/vm.cpp#L597-L609

 };

 void correct () {
 std::cout << "Correct" << std::endl;
 std::cout << "Before guard" << std::endl;
 Guard guard(0);
 std::cout << "After guard" << std::endl;

 }

 void incorrect () {
 std::cout << "Incorrect" << std::endl;
 std::cout << "Before guard" << std::endl;
 Guard(1);
 std::cout << "After guard" << std::endl;

 }

 int main (int argc, char * argv[]) {
 correct();
 std::cout << "---" << std::endl;
 incorrect();
 return 0 ;

 }

 Figure 15.2: A minimal example demonstrating the scope of an unassigned guard instantiation

 $ g++ -O3 -std=c++17 object_create_no_name.cpp && ./a.out
 Correct
 Before guard
 Created 0
 After guard
 Destroyed 0

 Incorrect
 Before guard
 Created 1
 Destroyed 1
 After guard

 Figure 15.3: The output of the minimal example in Figure 15.2

 Exploit Scenario
 TON users are erroneously charged for cell operations when loading libraries.

 Recommendations
 Short term, assign the guard to a variable to ensure its scope lasts the entire function.

 Long term, increase unit test coverage to check gas cost invariants.

 Trail of Bits 47 TON Security Assessment
 CONFIDENTIAL

 16. Performance warning timers in the cell DB do not work

 Severity: Low Difficulty: Low

 Type: Timing Finding ID: TOB-TON-16

 Target: validator/db/celldb.cpp

 Description
 Similar to finding TOB-TON-15 , the td::PerfWarningTimer class uses RAII to control the
 scope and lifetime of timers. There are several instances in the cell database code where
 the timer is never assigned to a variable, so it will be immediately destructed after
 instantiation. (Figures 15.2 and 15.3, above, exemplify why this is dangerous.)

 For example, the timers on lines 94 and 197 of celldb.cpp are ineffective.

 93 void CellDbIn::store_cell(BlockIdExt block_id, td::Ref<vm::Cell> cell,
 td::Promise<td::Ref<vm::DataCell>> promise) {
 94 td::PerfWarningTimer{ "storecell" , 0.1 };

 Figure 16.1: The timer instantiated on line 94 is ineffective.
 (validator/db/celldb.cpp#93–94)

 196 void CellDbIn::gc_cont2(BlockHandle handle) {
 197 td::PerfWarningTimer{ "gccell" , 0.1 };

 Figure 16.2: The timer instantiated on line 197 is ineffective.
 (validator/db/celldb.cpp#196–197)

 Exploit Scenario
 A performance regression or edge case in the cell database goes unnoticed because the
 PerfWarningTimer erroneously underestimates the runtime of the functions.

 Recommendations
 Short term, assign the timers to variables to ensure their scope lasts for the entire function.

 Long term, add static analyses that can detect unassigned instantiations with no side
 effects to TON’s CI pipeline.

 Trail of Bits 48 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator/db/celldb.cpp#L93-L94
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator/db/celldb.cpp#L196-L197

 17. DHT queries will crash if debug logging is enabled

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-17

 Target: dht/dht-query.hpp

 Description
 On construction of DhtQueryFindValue and DhtQueryFindNodes (Figure 17.1), the base
 DhtQuery constructor is called (line 109). In that constructor (Figure 17.2), add_nodes is
 called (line 59), which in turn calls get_name (three times), which is a pure virtual function.
 Calling a pure virtual function during object construction is undefined behavior.

 If the DHT_EXTRA_DEBUG flag is enabled, then the first line of add_nodes will explicitly call
 get_name and immediately abort (Figure 17.3).

 106 DhtQueryFindNodes(DhtKeyId key, DhtMember::PrintId print_id,
 adnl::AdnlNodeIdShort src, DhtNodesList list,
 107 td::uint32 k, td::uint32 a, DhtNode self, bool
 client_only, td::actor::ActorId<DhtMember> node,
 108 td::actor::ActorId<adnl::Adnl> adnl,
 td::Promise<DhtNodesList> promise)
 109 : DhtQuery(key, print_id, src, std::move(list), k, a, std::move(self),
 client_only, node, adnl)
 110 , promise_(std::move(promise)) {
 111 }

 Figure 17.1: The DhtQueryFindNodes constructor calls DhtQuery
 (dht/dht-query.hpp#106–111)

 40 class DhtQuery : public td::actor::Actor {
 41 protected :
 42 DhtKeyId key_;
 43 DhtNode self_;
 44 bool client_only_;
 45
 46 public :
 47 DhtQuery(DhtKeyId key, DhtMember::PrintId print_id, adnl::AdnlNodeIdShort
 src, DhtNodesList list, td::uint32 k,
 48 td::uint32 a, DhtNode self, bool client_only,
 td::actor::ActorId<DhtMember> node,
 49 td::actor::ActorId<adnl::Adnl> adnl)
 50 : key_(key)
 51 , self_(std::move(self))
 52 , client_only_(client_only)

 Trail of Bits 49 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/master/dht/dht-query.hpp#L106-L111

 53 , print_id_(print_id)
 54 , src_(src)
 55 , k_(k)
 56 , a_(a)
 57 , node_(node)
 58 , adnl_(adnl) {
 59 add_nodes(std::move(list));
 60 }

 Figure 17.2: DhtQuery calls add_nodes on line 59. (dht/dht-query.hpp#40–60)

 67 VLOG(DHT_EXTRA_DEBUG) << this << ": " << get_name() << " query: received " <<
 list.size() << " new dht nodes" ;

 Figure 17.3: add_nodes calls get_name , which is a pure virtual function.
 (dht/dht-query.cpp#67)

 Exploit Scenario
 A node is running with DHT_EXTRA_DEBUG enabled. Upon its first DHT query, the node will
 abruptly terminate due to an abort.

 Recommendations
 Short term, ensure that pure virtual functions are never called from a constructor.

 Long term, add static analyses that can detect this error case to TON’s CI pipeline.

 Trail of Bits 50 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/master/dht/dht-query.hpp#L40-L60
https://github.com/ton-blockchain/ton/blob/master/dht/dht-query.cpp#L67

 18. Frequent connection state changes can cause an ADNL node to exhaust
 memory

 Severity: Informational Difficulty: Low

 Type: Denial of Service Finding ID: TOB-TON-18

 Target: adnl/adnl-peer.cpp

 Description
 When the connection state of an ADNL peer changes, all of the pending messages are sent,
 as shown below.

 771 void AdnlPeerPairImpl::conn_change_state(AdnlConnectionIdShort id, bool
 ready) {
 772 if (ready) {
 773 if (pending_messages_.size() > 0) {
 774 send_messages_in(std::move(pending_messages_), true);
 775 }
 776 }
 777 }

 Figure 18.1: Pending messages are flushed on connection state changes.
 (adnl/adnl-peer.cpp#771–777)

 The pending messages vector is passed using move semantics. The C++ standard does not
 specify that a vector must be cleared after having been moved, only that it remains in a
 valid (but unspecified) state. Therefore, the original content of pending_messages_ vector
 could technically remain while the send_messages_in function is being executed.

 The messages passed to send_messages_in are added back to pending_messages_ on
 lines 250 to 252 of the code in Figure 18.2. Therefore, the pending messages vector could
 be duplicated.

 235 void AdnlPeerPairImpl::send_messages_in(std::vector<OutboundAdnlMessage>
 messages, bool allow_postpone) {

 Trail of Bits 51 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/adnl/adnl-peer.cpp#L771-L777

 236 for (td::int32 idx = 0 ; idx < 2 ; idx++) {

 ︙

 250 for (auto & m : messages) {
 251 pending_messages_.push_back(std::move(m));
 252 }

 Figure 18.2: The messages are added back to the pending messages queue.
 (adnl/adnl-peer.cpp#235–252)

 This finding is informational because our experiments suggest that the major compilers
 and C++ standard libraries implicitly clear a vector after it is moved. However, the C++
 standard does not explicitly require this, and there are instances where it is not
 guaranteed .

 Exploit Scenario
 Alice builds a TON node with an implementation of C++ that does not guarantee that
 moved vectors are implicitly cleared. Bob repeatedly connects to and disconnects from
 Alice’s node. Each time, Alice’s node’s pending messages vector doubles in size, eventually
 exhausting memory.

 Recommendations
 Short term, move the pending messages vector to a temporary vector and explicitly clear
 the pending messages before calling send_messages_in on line 774 of Figure 18.1.

 Long term, consider reducing the use of std::move in the codebase (see TOB-TON-1 and
 the expanded discussion in the general code quality recommendations appendix).

 Trail of Bits 52 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/adnl/adnl-peer.cpp#L235-L252
https://stackoverflow.com/questions/17730689/is-a-moved-from-vector-always-empty
https://stackoverflow.com/questions/17730689/is-a-moved-from-vector-always-empty

 19. Missing base copy constructor invocation in derived copy constructor

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-19

 Target: validator/impl/shard.cpp

 Description
 The copy constructor for ShardStateQ does not invoke its parent class’s copy constructor
 (see Figure 19.1). This issue can lead to unexpected behavior. ShardStateQ ultimately
 inherits from CntObject , which is part of the implemented reference counting
 mechanism. In this case, the CntObject copy constructor just invokes the default
 constructor, and the implementation works as expected. However, should there be any
 custom behavior in the CntObject copy constructor, reference counting could potentially
 fail, leading to memory leaks or use-after-free situations.

 39 ShardStateQ::ShardStateQ(const ShardStateQ& other)
 40 : blkid(other.blkid)
 41 , rhash(other.rhash)
 42 , data(other.data.is_null() ? td::BufferSlice{} : other.data.clone())
 43 , bocs_(other.bocs_)
 44 , root(other.root)
 45 , lt(other.lt)
 46 , utime(other.utime)
 47 , before_split_(other.before_split_)
 48 , fake_split_(other.fake_split_)
 49 , fake_merge_(other.fake_merge_) {
 50 }

 Figure 19.1: Base class copy constructor not invoked (validator/impl/shard.cpp#L39-L50)

 This finding is informational because the implementation currently works. Should there be
 any custom behavior in any of the base classes (e.g., as the result of a future refactor,
 optimization, or feature addition) this could become a serious issue, as it is involved in
 memory management.

 The code example in Figures 19.2 and 19.3 illustrates the issue.

 Additional instances of the same issue occur at the following three locations:

 ● crypto/block/block-db.cpp#L822-L829
 ● validator/impl/block.cpp#L27
 ● validator/impl/top-shard-descr.hpp#L36

 Trail of Bits 53 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator/impl/shard.cpp#L39-L50
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/block/block-db.cpp#L822-L829
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator/impl/block.cpp#L27
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator/impl/top-shard-descr.hpp#L36

 # include <iostream>

 class Base {
 public :
 int member;
 Base () : member(1) {}
 Base (Base const & c) : member(c.member) {}

 };

 class Between : public Base {

 };

 class Derived : public Between {
 int value;
 public :
 Derived () : value(1) {}

 Derived (Derived const& c) : value(c.value) {}
 };

 int main(int argc, char *argv[]) {
 Base b0;
 b0.member = 11 ;
 Base b1(b0);
 std::cout << "b1.member: " << b1.member << " equal after copy: " << (b1.member ==

 b0.member) << std::endl;

 Derived d0;
 d0.member = 128 ;
 Derived d1(d0);
 std::cout << "d1.member: " << d1.member<< " equal after copy: " << (d1.member ==

 d0.member) << std::endl;

 return 0 ;
 }

 Figure 19.2: Code example illustrating not invoking base class copy constructor from derived
 class copy constructor

 # include <iostream>
 $ g++ -O3 -std=c++17 parent_copy_ctor.cpp && ./a.out
 b1.member: 11 equal after copy: 1
 d1.member: 1 equal after copy: 0

 Figure 19.3: Executing the program from Figure 19.2

 Exploit Scenario
 A change to one of the base classes is made and introduces a use-after-free bug or a
 memory leak, which an attacker exploits to get arbitrary code execution or cause the node
 to crash.

 Trail of Bits 54 TON Security Assessment
 CONFIDENTIAL

 Recommendations
 Short term, invoke the base class constructor to ensure consistent behavior.

 Long term, implement static code analysis to detect when a copy constructor in a derived
 class does not invoke its base class copy constructor.

 Trail of Bits 55 TON Security Assessment
 CONFIDENTIAL

 20. Unbounded storage of received Catchain blocks

 Severity: Informational Difficulty: Low

 Type: Denial of Service Finding ID: TOB-TON-20

 Target: catchain/catchain-receiver.cpp

 Description
 A feature of the Catchain protocol is that received blocks are queued pending arrival of
 dependent blocks. The number of blocks that are queued is unbounded unless a
 configuration setting is changed.

 When the configuration parameter catchain_max_blocks_coeff is configured, nodes
 will reject blocks whose height is too high, limiting the risk of out-of-memory conditions.

 The severity of this finding is informational because this is a documented vulnerability with
 an implemented mitigation. However, the default Catchain settings do not enable the
 mitigation.

 Exploit Scenario
 A malicious validator sends blocks to other validators that have dependencies that cannot
 be verified, causing high memory load on other nodes and eventually exhausting memory.

 Recommendations
 Short term, warn the user whenever the catchain_max_blocks_coeff parameter is set
 to zero.

 Long term, prefer settings that are secure by default and consider changing the default
 value of catchain_max_blocks_coeff to the recommended value.

 Trail of Bits 56 TON Security Assessment
 CONFIDENTIAL

 21. Getting account state can crash when building a state root proof

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-21

 Target: validator/impl/liteserver.cpp

 Description
 The function call to get_hash(0) on line 993 of liteserver.cpp , shown in Figure 21.1,
 returns a temporary object of type vm::cell::Hash . When invoking bits() on that
 object, a pointer referencing a member of the temporary object is returned and assigned
 to upd_hash . Once evaluation of that statement is complete, the temporary object goes
 out of scope and is destroyed. This leaves a dangling pointer in upd_hash .

 The expression on line 994 (Figure 21.1) contains the same issue.

 993 auto upd_hash = upd_cs.prefetch_ref(1)->get_hash(0).bits();
 994 auto state_hash = state_root->get_hash().bits();
 995 if (upd_hash.compare(state_hash, 256)) {

 Figure 21.1: upd_hash points to out-of-scope stack memory after line 993
 (validator/impl/liteserver.cpp#L993-L995)

 Exploit Scenario
 The TON codebase is built using a compiler that reuses the memory pointed to by
 upd_hash immediately after line 993. On line 995, the dereference causes a crash, causing
 the network to break consensus.

 Recommendations
 Short term, assign the return value of get_hash() to a variable to keep it alive for as long
 as there are pointers referring to the memory in it.

 Long term, consider code patterns that prevent dangling pointers and implement dynamic
 code analysis to detect stack use after scope.

 Trail of Bits 57 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator/impl/liteserver.cpp#L993-L995

 22. Misaligned object allocation and interaction

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-22

 Target: catchain/catchain-receiver.cpp

 Description
 A custom allocation scheme is implemented in
 validator-session/validator-session-description.cpp . Memory allocation
 eventually reaches the ValidatorSessionDescriptionImpl::alloc function
 (Figure 22.1). The align parameter controls alignment, but it is not used in the function
 body. The effect is that object allocation is executed as if aligned on 1-byte boundaries.
 However, objects with higher requirements on allocation (e.g., 8-byte alignment) receive
 memory from this function. This causes misaligned object construction. Interaction with
 these misaligned objects happens in several locations, triggering multiple instances of
 undefined behavior.

 164 void * ValidatorSessionDescriptionImpl::alloc (size_t size, size_t align, bool
 temp) {
 165 if (temp) {
 166 auto s = pdata_temp_ptr_;
 167 pdata_temp_ptr_ += size;
 168 CHECK(s + size <= pdata_temp_size_);
 169 return static_cast < void *>(pdata_temp_ + s);
 170 } else {
 171 while (true) {
 172 auto s = pdata_perm_ptr_;
 173 pdata_perm_ptr_ += size;
 174
 175 if (pdata_perm_ptr_ <= pdata_perm_.size() * pdata_perm_size_) {
 176 return static_cast < void *>(pdata_perm_[s / pdata_perm_size_] + (s %
 pdata_perm_size_));
 177 }
 178
 179 pdata_perm_.push_back(new td::uint8[pdata_perm_size_]);
 180 }
 181 }
 182 }

 Figure 22.1: Root cause for non-aligned object construction
 (validator-session/validator-session-description.cpp#L164-L182)

 Trail of Bits 58 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator-session/validator-session-description.cpp#L164-L182

 Exploit Scenario
 The TON node is built using a compiler that detects this undefined behavior and optimizes
 it out. This leads to a crash or incorrect computation during validation, causing the network
 to lose consensus.

 Recommendations
 Short term, implement aligned allocation by honoring the align parameter.

 Long term, implement dynamic analysis to detect misaligned object allocation and
 interaction. Consider the use of the c++ keyword alignof to get alignment requirements.

 Trail of Bits 59 TON Security Assessment
 CONFIDENTIAL

 23. Use of DowncastHelper leads to invalid downcast of incorrect type

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-23

 Target: tl/tl/tl_json.h

 Description
 The use of downcast_call from the auto-generated ton_api.hpp in combination with
 DowncastHelper from tl/tl/tl_json.h#L240-L253 invokes undefined behavior due
 to an incorrect downcast.

 One example is parsing of public keys from JSON, invoking the code in Figure 23.1. In this
 particular case, the helper will be of type DowncastHelper<PublicKey> , which inherits
 from PublicKey (see Figure 23.2). Because of the inheritance relation, the upcast to
 PublicKey& on line 279 (see Figure 23.1) is correct. However, in the specialization of
 downcast_call for PublicKey (Figure 23.3), the obj (who is the helper from
 Figure 23.1) is downcast into pub_ed25519 , which also inherits from PublicKey . The issue
 is that pub_ed25519 does not inherit from DowncastHelper<PublicKey> , which is the
 actual type of obj . Performing the downcast to pub_ed25519 is undefined behavior.

 277 DowncastHelper<T> helper(constructor);
 278 Status status;
 279 bool ok = downcast_call(static_cast <T &>(helper), [&](auto &dummy) {
 280 auto result = ton::create_tl_object<std::decay_t< decltype (dummy)>>();
 281 status = from_json(*result, object);
 282 to = std::move(result);
 283 });

 Figure 23.1: Calling code, leading up to incorrect downcast in downcast_call .
 (tl/tl/tl_json.h#L277-L283)

 240 template < class T >
 241 class DowncastHelper : public T {
 242 public :
 243 explicit DowncastHelper(int32 constructor) : constructor_(constructor) {
 244 }
 245 int32 get_id() const override {
 246 return constructor_;
 247 }
 248 void store(TlStorerToString &s, const char *field_name) const override {
 249 }

 Trail of Bits 60 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/tl/tl/tl_json.h#L240-L253
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/tl/tl/tl_json.h#L277-L283

 250
 251 private :
 252 int32 constructor_{ 0 };
 253 };

 Figure 23.2: Helper type used in JSON handling for constructing objects based on constructor ID
 (tl/tl/tl_json.h#L240-L253)

 1330 template < class T>
 1331 bool downcast_call(PublicKey &obj, const T & func) {
 1332 switch (obj.get_id()) {
 1333 case pub_unenc::ID:
 1334 func (static_cast<pub_unenc &>(obj));
 1335 return true ;
 1336 case pub_ed25519::ID:
 1337 func (static_cast<pub_ed25519 &>(obj));
 1338 return true ;
 1339 case pub_aes::ID:
 1340 func (static_cast<pub_aes &>(obj));
 1341 return true ;
 1342 case pub_overlay::ID:
 1343 func (static_cast<pub_overlay &>(obj));
 1344 return true ;
 1345 default:
 1346 return false ;
 1347 }
 1348 }

 Figure 23.3: Specialization of downcast_call for PublicKey , invoking undefined behavior due
 to an incorrect downcast. (tl/generate/auto/tl/ton_api.hpp:1330-1348)

 Exploit Scenario
 The TON node is built using a compiler that detects this undefined behavior and optimizes
 it out. This leads to a crash or incorrect computation during validation, causing the network
 to lose consensus.

 Recommendations
 Short term, replace the use of DowncastHelper and downcast_call with an
 implementation that does not cause invalid downcasts. Figure 23.4 provides one example
 (pseudocode) of how this can be done.

 Long term, implement dynamic code analysis to automatically detect incorrect downcasts
 during testing.

 Trail of Bits 61 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/tl/tl/tl_json.h#L240-L253

 1 template < class T>
 2 bool downcast_construct(PublicKey &obj, const T & func) {
 3 switch (obj.get_id()) {
 4 case pub_ed25519::ID:
 5 func (ton::create_tl_object<pub_ed25519>()>);
 6 return true ;
 7 case pub_aes::ID:
 8 func (ton::create_tl_object<pub_aes>()>);
 9 return true ;
 10 default:
 11 return false ;
 12 }
 13 }
 14
 15 DowncastHelper<T> helper(constructor);
 16 Status status;
 17 bool ok = downcast_construct(static_cast<T &>(helper), [&](auto result) {
 18 status = from_json(*result, object);
 19 to = std::move(result);
 20 });

 Figure 23.4: Example of how to construct the objects from constructor ID without causing invalid
 downcasts

 Trail of Bits 62 TON Security Assessment
 CONFIDENTIAL

 24. Clock drift can break consensus

 Severity: Informational Difficulty: Low

 Type: Timing Finding ID: TOB-TON-24

 Target: validator-engine

 Description
 The TON Catchain block consensus protocol relies on nodes’ local times in order to
 calculate the current round and attempt. The protocol assumes that all nodes have a
 globally synchronized clock; otherwise, nodes’ calculated rounds and attempts may be
 incorrect. Our experiments have revealed that at most twenty seconds of clock drift is
 sufficient to prevent a node from participating in consensus. If one third or more of the
 nodes do not agree on the current time (and, thereby, the current round and attempt),
 then the consensus protocol will never quiesce. Over the past month, TON averaged 215
 validators, so clock drift in at least 72 would be sufficient to deny service to the network.

 Exploit Scenario
 Over one third of the nodes’ clocks do not agree on the current time. The consensus
 protocol never progresses, and the TON network does not accept any new blocks.

 Recommendations
 Short term, document the importance of synchronizing the nodes’ clocks.

 Long term, consider revising the consensus protocol such that it does not rely on nodes
 having synchronized clocks. Alternatively, consider switching to a well studied, partially
 synchronous BFT protocol like HotStuff . This would not increase the one third of nodes
 necessary to disrupt the system; however, it would prevent an unintentional denial of
 service in the presence of benign clock drift.

 Trail of Bits 63 TON Security Assessment
 CONFIDENTIAL

https://arxiv.org/pdf/1803.05069.pdf

 25. Shard records can be instantiated with uninitialized member variables

 Severity: Undetermined Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-25

 Target: crypto/block/block-parse.h

 Description
 The default constructor for the ShardIdent::Record class does not initialize its
 workchain_id and shard_prefix member variables.

 981 struct ShardIdent ::Record {
 982 int shard_pfx_bits;
 983 int workchain_id;
 984 unsigned long long shard_prefix;
 985 Record() : shard_pfx_bits(-1) {
 986 }

 Figure 25.1: The default constructor only initializes the shard_pfx_bits member.
 (crypto/block/block-parse.h#981–986)

 The severity of this finding is undetermined because we were unable to confirm whether
 the uninitialized members are ever read from an object initialized this way.

 Exploit Scenario
 A shard record is initialized with the default constructor, and its prefix is read before being
 initialized, causing a crash.

 Recommendations
 Short term, initialize all of the member variables from the ShardIdent::Record default
 constructor.

 Long term, integrate static analyses into TON’s CI lifecycle that would catch these sorts of
 errors.

 Trail of Bits 64 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/block/block-parse.h#L981-L986

 26. Signatures of block antecessors are not validated

 Severity: Undetermined Difficulty: High

 Type: Data Validation Finding ID: TOB-TON-26

 Target: validator/impl/validate-query.cpp

 Description
 Antecessor block signature verification has yet to be implemented. As a result, nothing is
 executed if there is at least one signature (the first case on line 5422 of Figure 26.1). The
 rejection on line 5424 is inaccessible because of the “ && false ” on line 5423.

 5420 if (id_.seqno() > 1) {
 5421 if (prev_signatures_.not_null()) {
 5422 // TODO: check signatures here
 5423 } else if (!is_fake_ && false) { // FIXME: remove "&& false" when
 collator serializes signatures
 5424 return reject_query("block contains an empty signature set for the
 previous block");
 5425 }
 5426 }

 Figure 26.1: Signatures on the previous block are not validated.
 (validator/impl/validate-query.cpp#5420–5426)

 This code path is exercised when validating master chain block queries.

 The severity of this finding is undetermined because it is unclear if a block with invalid
 antecessor signature(s) could pose a security risk.

 Exploit Scenario
 A malicious user or validator crafts a block whose antecessor signatures are incorrect.
 Other validators accept this block, even though it should be rejected. This leads to a fork.

 Recommendations
 Short term, validate antecessor signatures.

 Long term, add unit tests that exercise this edge case.

 Trail of Bits 65 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator/impl/validate-query.cpp#L5420-L5426

 27. TLB reference validation can be bypassed

 Severity: Undetermined Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-TON-27

 Target: crypto/tl/tlblib.cpp

 Description
 The TLB::validate_ref_internal implementation blindly decrements an argument
 before testing whether it is negative. If the value is INT_MIN , then the ensuing integer
 underflow will cause the test to return an erroneous value.

 127 bool TLB::validate_ref_internal (int * ops, Ref<vm::Cell> cell_ref, bool weak)
 const {
 128 if (ops && --*ops < 0) {
 129 return false ;
 130 }

 Figure 27.1: Integer underflow can occur on line 128 if the ops argument has value INT_MIN .
 (crypto/tl/tlblib.cpp#127–130)

 The severity and difficulty of this finding is undetermined because we were unable to
 confirm whether the ops argument is user-controllable to the extent that it could be set to
 INT_MIN .

 Exploit Scenario
 A malicious user crafts a message that causes the ops argument to underflow, causing the
 validation to pass when it should have failed.

 Recommendations
 Short term, confirm if the ops pointee is user-controlled and implement a check for integer
 underflow.

 Long term, ensure test cases explore the boundaries of validation.

 Trail of Bits 66 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/tl/tlblib.cpp#L127-L130

 28. The TON client’s get shards request can fail

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-28

 Target: tl/tl/tl_json.h

 Description
 The lambda used to handle liteserver query responses for obtaining all shards’ information
 has several return statements commented out. For example, a deserialization error will
 cause the code on line 4216 of Figure 28.1 to fall through and continue as if the error did
 not occur. If either of the checks on lines 4211 or 4220 succeeds, the function will flow off
 the end without returning a value, which constitutes undefined behavior.

 Trail of Bits 67 TON Security Assessment
 CONFIDENTIAL

 4208 promise.wrap([](lite_api_ptr<ton::lite_api::liteServer_allShardsInfo>&&
 all_shards_info) {
 4209 td::BufferSlice proof = std::move((*all_shards_info).proof_);
 4210 td::BufferSlice data = std::move((*all_shards_info).data_);
 4211 if (data.empty()) {
 4212 //return td::Status::Error("shard configuration is empty");
 4213 } else {
 4214 auto R = vm::std_boc_deserialize(data.clone());
 4215 if (R.is_error()) {
 4216 //return td::Status::Error("cannot deserialize shard configuration");
 4217 }
 4218 auto root = R.move_as_ok();
 4219 block::ShardConfig sh_conf;
 4220 if (!sh_conf.unpack(vm::load_cell_slice_ref(root))) {
 4221 //return td::Status::Error("cannot extract shard block list from
 shard configuration");
 4222 } else {
 4223 auto ids = sh_conf.get_shard_hash_ids(true);
 4224 tonlib_api::blocks_shards shards;
 4225 for (auto id : ids) {
 4226 auto ref = sh_conf.get_shard_hash(ton::ShardIdFull(id));
 4227 if (ref.not_null()) {
 4228 shards.shards_.push_back(to_tonlib_api(ref->top_block_id()));
 4229 }
 4230 }
 4231 return
 tonlib_api::make_object<tonlib_api::blocks_shards>(std::move(shards));
 4232 }
 4233 }
 4234 }));

 Figure 28.1: (tonlib/tonlib/TonlibClient.cpp#4208–4234)

 Exploit Scenario
 A TonLibClient receiving shards of unexpected format triggers undefined behavior, leading
 to a crash or incorrect computation.

 Recommendations
 Short term, restore the disabled return statements to prevent invocation of undefined
 behavior.

 Long term, implement static code analysis to detect functions that are missing return
 statements.

 Trail of Bits 68 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/tonlib/tonlib/TonlibClient.cpp#L4208-L4234

 29. Bigint and cell tests can silently fail due to undefined behavior

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-29

 Target: crypto/test/test-bigint.cpp /modbigint.cpp /test-cells.cpp

 Description
 The test-bigint.cpp test exhibits undefined behavior by executing a left shift of a
 negative value on lines 189 (Figure 29.1) and 218 (Figure 29.2).

 187 for (int i = 63 ; i >= 0 ; --i) {
 188 if (r < 8) {
 189 acc += (a << r);
 190 r = 1024 ;
 191 }
 192 r -= 8 ;
 193 bin[i] = (unsigned char)(acc & 0xff);
 194 acc >>= 8 ;
 195 }

 Figure 29.1: On line 189, the variable a has value -32 for at least one iteration of the test.
 (crypto/test/test-bigint.cpp#187–195)

 217 void bin_add_small (unsigned char bin[64], long long val, int shift = 0) {
 218 val <<= shift & 7 ;
 219 for (int i = 63 - (shift >> 3); i >= 0 && val; --i) {
 220 val += bin[i];
 221 bin[i] = (unsigned char)val;
 222 val >>= 8 ;
 223 }
 224 }

 Figure 29.2: On line 218, val has value -1 for at least one iteration of the test.
 (crypto/test/test-bigint.cpp#217–224)

 The modbigint.cpp test exhibits similar undefined behavior on line 906 (Figure 29.3) and
 also exhibits signed integer overflow on line 294 (Figure 29.4).

 904 for (; i < size; i++) {
 905 pow += 8 ;
 906 acc = (acc << 8) + arr[i];
 907 if (pow >= 56) {
 908 lshift_add(pow, acc);

 Trail of Bits 69 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/test/test-bigint.cpp#L187-L195
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/test/test-bigint.cpp#L217-L224

 909 acc = pow = 0 ;
 910 }
 911 }

 Figure 29.3: On line 906, acc has value -1 for at least one iteration of the test.
 (crypto/test/modbigint.cpp#904–911)

 291 explicit operator long long () const {
 292 long long acc = 0. ;
 293 for (int i = N - 1 ; i >= 0 ; --i) {
 294 acc = acc * mod[i] + a[i];
 295 }
 296 return acc;
 297 }

 Figure 29.4: On line 294, acc has value 420121321411714226 and mod[i] has value
 999999937 for at least one iteration of the test, causing signed integer overflow.

 (crypto/test/modbigint.cpp#291–297)

 Finally, the test-cells.cpp test also exhibits signed integer overflow on line 553 (Figure
 29.5).

 551 for (auto & c : r) {
 552 c = (k & 0x80) ? (unsigned char)(k >> 8) : 0 ;
 553 k = 69069 * k + 1 ;
 554 }

 Figure 29.5: On line 553, k has value 69070 on at least one iteration of the test, causing signed
 integer overflow in the multiplication. (crypto/test/test-cells.cpp#551–554)

 Exploit Scenario
 The compiler detects the undefined behavior and elides the code during optimization,
 causing the tests to erroneously pass when they should have failed, hiding a latent bug.

 Recommendations
 Short term, add data validation to ensure that the undefined behavior does not occur.

 Long term, regularly compile and run all tests with the LLVM undefined behavior sanitizer
 enabled (UBSan, see Appendix D), preferably in TON’s CI pipeline.

 Trail of Bits 70 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/test/modbigint.cpp#L904-L911
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/test/modbigint.cpp#L291-L297
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/test/test-cells.cpp#L551-L554

 30. Multiplication of a constant can lead to a misaligned stack

 Severity: High Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-30

 Target: crypto/func/builtins.cpp

 Description
 The FunC code in Figure 30.1 contains a function that should always return a single integer,
 valued zero.

 int test(int x) {
 return (x * 0) * 0 ;

 }

 Figure 30.1: The test function always returns zero, regardless of the value of x .

 When compiled, the test function results in the Fift code in Figure 30.2.

 DECLPROC test
 test PROC :<{
 0 MULCONST
 0 PUSHINT

 }>

 Figure 30.2: The resulting Fift code when the test function from Figure 30.1 is compiled.

 In FunC’s calling convention, the function is responsible for cleaning up the stack before
 returning. In this case, the final 0 PUSHINT instruction causes an extraneous value to
 remain on the stack after the function returns, resulting in a stack misalignment.

 Exploit Scenario
 Consider the FunC code in Figure 30.3.

 int test(int x) {
 return 42 | (x * 0 * 0);

 }

 () main() {
 var test_result = test(0);
 throw_unless(100 , test_result == 42);

 }

 Figure 30.3: A real-world example of how stack misalignment can lead to a bug

 Trail of Bits 71 TON Security Assessment
 CONFIDENTIAL

 This code should never throw an exception since the result of the test function will always
 be 42 regardless of the value of x . However, the stack after the call to test(0) will be 42 at
 the bottom and zero at the top (thanks to the erroneous PUSHINT , as demonstrated in
 Figure 30.2). Therefore, the value of test_result will be zero due to the stack
 misalignment, and an exception will be thrown.

 The code is deployed on mainnet and is interpreted differently than the programmer
 intended.

 Recommendations
 Short term, fix the multiplication stack misalignment. We suspect that it is due to a variable
 not being marked as unused during a multiply-by-zero optimization.

 Long term, increase unit test and fuzzing coverage to explore these edge cases.

 Trail of Bits 72 TON Security Assessment
 CONFIDENTIAL

 31. FunC codegen invokes undefined behavior

 Severity: Medium Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-31

 Target: crypto/func/codegen.cpp

 Description
 When generating the next code step, the operator’s next member variable is always
 dereferenced even though it can sometimes be nullptr . This will happen on line 279 of
 Figure 31.1. This undefined behavior can lead to a crash.

 275 bool Op::generate_code_step (Stack& stack) {
 276 stack.opt_show();
 277 stack.drop_vars_except(var_info);
 278 stack.opt_show();
 279 const auto & next_var_info = next->var_info;
 280 bool inline_func = stack.mode & Stack::_InlineFunc;

 Figure 31.1: The next variable can be nullptr when dereferenced on line 279.
 (crypto/func/codegen.cpp#275–280)

 Exploit Scenario
 This undefined behavior is actually exhibited when compiling the elector code contract:

 $ crypto/func -PS -o /tmp/dst.fif smartcont/stdlib.fc
 smartcont/elector-code.fc

 However, the compilation completes without an error. The undefined behavior will cause a
 differential between compilers, and potentially introduce errors into the resulting Fift code.
 This can be confirmed by adding an assertion between lines 278 and 279 that ensures

 next != nullptr .

 Recommendations
 Short term, ensure that next cannot be nullptr before attempting member access. The
 next_var_info variable is not used in every code path within the function, so also
 consider calculating it only when necessary.

 Trail of Bits 73 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/crypto/func/codegen.cpp#L275-L280

 Long term, implement dynamic code analysis to detect member accesses within null
 pointers.

 Trail of Bits 74 TON Security Assessment
 CONFIDENTIAL

 32. Constant operations on NaN can cause the FunC compiler to crash

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-32

 Target: crypto/common/refcnt.hpp

 Description
 Constant operations on NaN can cause the FunC compiler to crash in different ways. For
 example, the code in Figure 32.1 will cause the compiler to abort due to a failed reference
 counting assertion.

 int eval (int x) {
 return x / 0 + 0 * x + x;

 }

 Figure 32.1: An example FunC program that will cause the compiler to crash

 Both the division by zero and the multiplication by zero are necessary to produce the crash.
 Swapping the first two addends will also produce the same crash; however, swapping the
 latter two addends will enable compilation without a crash. This suggests that the bug may
 be attributable to constant operations on NaN, since there is an existing codegen
 optimization that will rewrite x / 0 as NaN (even if peephole optimizations are disabled
 with -O0).

 If the last addend—the standalone x term—is changed to a constant, then the compiler will
 abort with a different crash:

 libc++abi: terminating with uncaught exception of type
 td::CntObject::WriteError

 Exploit Scenario
 The FunC compiler crashes, failing to produce an intelligible error, for FunC code with valid
 syntax.

 Recommendations
 Short term, fix these bugs to ensure that the compiler does not crash on valid FunC input.

 Long term, add unit tests to cover this edge case.

 Trail of Bits 75 TON Security Assessment
 CONFIDENTIAL

 33. Undefined variables in FunC are treated as undefined functions and do not
 cause a compiler error

 Severity: Medium Difficulty: Low

 Type: Error Reporting Finding ID: TOB-TON-33

 Target: crypto/func/codegen.cpp

 Description
 Undefined variables in FunC code are treated as undefined function symbols. An error is
 printed, but the compiler still emits Fift code as if the variables were functions and exits
 with return code zero.

 Exploit Scenario
 Consider the code in Figure 33.1:

 1 int contains_typo(int a) {
 2 return a* 2 ;
 3 }

 Figure 33.1: A FunC function containing a typo on line 2

 Unlike most programming languages, FunC requires whitespace around operators.
 However, the programmer made the honest mistake of forgetting to add whitespace
 around the multiplication operator on line 2. The FunC compiler will print a warning, yet it
 will still emit Fift code that erroneously treats the variable as an undefined function symbol.
 Since the compiler exits with return code zero, the programmer is likely to miss this error,
 particularly if there is a significant number of log messages thereafter.

 Recommendations
 Short term, treat undefined symbols in contexts where they are used as a variable (rather
 than a call) as unrecoverable compiler errors. Exit the compiler with a non-zero exit code.

 Long term, add unit tests to cover this edge case.

 Trail of Bits 76 TON Security Assessment
 CONFIDENTIAL

 34. Calls to implicitly impure functions without a return value are always
 optimized out without an error

 Severity: Medium Difficulty: Low

 Type: Error Reporting Finding ID: TOB-TON-34

 Target: FunC

 Description
 Calls to impure_function() without a return value will always be optimized out without
 producing a warning or error.

 Consider the FunC code in Figure 34.1.

 global int G;

 () impure_function() {
 G = 5 ;

 }

 () main() {
 impure_function();

 }

 Figure 34.1: The call to impure_function from main will be elided since it does not have a
 return value and is not marked as impure .

 Although the impure_function() is implicitly impure because it modifies a global as a
 side effect, it was not explicitly marked as impure . Therefore, the compiler is permitted to
 optimize out calls to it where the return value is not used. However, since
 impure_function() has no return value, it will always be optimized out, even if
 optimizations are disabled with -O0 . This will produce neither a compiler warning nor a
 compiler error.

 Any function with no return value that is not explicitly marked as impure is almost certainly
 a programming error and should be caught by the compiler.

 Exploit Scenario
 The programmer forgot to explicitly mark an implicitly impure function with the impure
 specifier. Calls to the function are optimized out without warning, despite the fact that the
 calls would have had side effects.

 Trail of Bits 77 TON Security Assessment
 CONFIDENTIAL

https://ton.org/docs/#/func/functions?id=impure-specifier
https://ton.org/docs/#/func/functions?id=impure-specifier

 Recommendations
 Short term, issue a compiler warning for every function with neither return values nor the
 impure specifier.

 Long term, add unit tests to cover this edge case, and consider elevating the compiler
 warning to an irrecoverable compiler error.

 Trail of Bits 78 TON Security Assessment
 CONFIDENTIAL

 35. Calls to implicitly impure functions with unused return values are always
 optimized out without an error

 Severity: Informational Difficulty: Low

 Type: Error Reporting Finding ID: TOB-TON-35

 Target: FunC

 Description
 Similarly to TOB-TON-34 , calls to implicitly impure functions with unused return values are
 always optimized out without producing a compiler warning or error.

 Consider the FunC code in Figure 35.1. It illustrates a potential input validation scenario.

 1 ;; Ensure arg is valid (>123)
 2 int validate_arg(int arg) {
 3 throw_unless(111 , arg > 123);
 4 return arg;
 5 }
 6
 7 int main(int val) {
 8 int v = validate_arg(val);
 9
 10 ;; Note that v is unused
 11 return val * 2 ;
 12 }

 Figure 35.1: Program validation logic is missing an impure specifier.

 The generated code for Figure 35.1 can be found in Figure 35.2.

 1 DECLPROC validate_arg
 2 DECLPROC main
 3 validate_arg PROC :<{
 4 DUP
 5 123 GTINT
 6 111 THROWIFNOT
 7 }>
 8 main PROC :<{
 9 1 LSHIFT #
 10 }>

 Figure 35.2: Resulting Fift code when compiling the FunC code from Figure 35.1.

 Trail of Bits 79 TON Security Assessment
 CONFIDENTIAL

 Note that the compiler silently elided the call to validate_arg from main . This is because
 the validate_arg() function was not explicitly marked as impure , despite the fact that it
 is implicitly impure due to its side effect of throwing. The compiler is permitted to optimize
 out calls to it when the return value of validate_arg() is assigned to variable v that is
 unused (see Figure 35.2). This will produce neither a compiler warning nor a compiler error.

 Any function that is not explicitly marked impure having an unused return value is likely a
 programming error and should be caught by the compiler.

 Despite being very similar to TOB-TON-34 , this finding is informational because it is
 technically documented behavior. However, we assume that this behavior is unexpected
 for most programmers learning FunC, since most other programming languages do not
 involve this sort of silent elision. Therefore, we strongly recommend TON consider our
 recommendations to this finding.

 Exploit Scenario
 The programmer has forgotten to explicitly mark an implicitly impure function with the
 impure specifier. Calls to the function are optimized out without warning, even though the
 calls would have had side effects. In the above case, validation would be skipped, silently
 enabling attacks.

 Recommendations
 Short term, issue a compiler warning for every call to a function that has a return value
 where the return value is unused, regardless of purity. For functions not marked as
 impure , consider elevating this to an irrecoverable compiler error.

 Long term, add unit tests to cover this edge case, and consider elevating the compiler
 warning to a compiler error.

 Trail of Bits 80 TON Security Assessment
 CONFIDENTIAL

https://ton.org/docs/#/func/functions?id=impure-specifier
https://ton.org/docs/#/func/functions?id=impure-specifier

 36. Comparison to NaN results in the other comparand

 Severity: High Difficulty: Medium

 Type: Data Validation Finding ID: TOB-TON-36

 Target: crypto/vm/arithops.cpp

 Description
 In the exec_cmp function (see Figure 36.1), if either x or y is not valid then x is chosen as
 the result of the operation (possibly throwing if the operation is not quiet and x is not
 valid). However, for the case that y is not valid, the result will always be x and, unless x is
 zero, will evaluate to a true expression. Therefore, if x is not zero and y is not valid (e.g., if
 y is NaN), then x and y will always be considered equal, regardless of their values.

 851 if (!x->is_valid() || !y->is_valid()) {
 852 stack.push_int_quiet(std::move(x), quiet);
 853 } else {

 Figure 36.1: Vulnerability that causes comparison to NaN to result in the other comparand.
 (crypto/vm/arithops.cpp#851–853)

 All comparison operators—not just equality (==), but also < , >= , etc.—use the exec_cmp
 function and are therefore vulnerable to this behavior.

 The FunC code in Figure 36.2 contains a procedure that compares the return value of the
 result of the qufits function to 64. The qufits function silently returns NaN in this case.

 1 int qufits(int x, int bits) impure asm "QUFITSX" ;
 2
 3 () evaluate(int l, int r) impure {
 4 throw_unless(345 , l == r);
 5 }
 6 int main() {
 7 evaluate(65 , qufits(1000000000000000 , 1));
 8 return 0 ;
 9 }

 Figure 36.2: The test function always returns zero, regardless of the value of x .

 When compiled, the test function results in the Fift code shown below.

 1 " Asm.fif " include
 2 // automatically generated from `../crypto/func/opttest/TOB-TON-36.fc`

 Trail of Bits 81 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/crypto/vm/arithops.cpp#L851-L853

 3 PROGRAM {
 4 DECLPROC evaluate
 5 DECLPROC main
 6 evaluate PROC :<{
 7 EQUAL
 8 345 THROWIFNOT
 9 }>
 10 main PROC :<{
 11 65 PUSHINT
 12 1000000000000000 PUSHINT
 13 1 PUSHINT
 14 QUFITSX
 15 evaluate CALLDICT
 16 0 PUSHINT
 17 }>
 18 } END >

 Figure 36.3: The resulting Fift code when the function from Figure 36.1 is compiled.

 One would expect this code to always throw, since 65 != NaN . However, the code will not
 throw when it is executed because of the logic bug in the exec_cmp function.

 Exploit Scenario
 Smart contract code is deployed on mainnet and an attacker passes parameters to a
 function, resulting in a comparison to NaN . The comparison succeeds even though it should
 have failed, allowing the attacker to bypass data validation controls.

 Recommendations
 Short term, make operator behavior with NaN operands consistent, regardless of argument
 order. Consider making comparison operators behave similarly to how other languages
 handle NaN comparisons. For example, in most languages (including Python and JavaScript),
 NaN does not equal any other value, including itself.

 Long term, increase unit test and fuzzing coverage to explore these edge cases. Consider
 throwing an exception in the event that a NaN is an argument to a non-silent comparison
 operator (other than ISNAN).

 Trail of Bits 82 TON Security Assessment
 CONFIDENTIAL

 37. FunC fails to reject out-of-range constants

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-37

 Target: func

 Description
 The FunC code in Figure 37.1 throws unless two constants are equal. The constants are
 outside of the valid range of -2 256 to 2 256 .

 1 () evaluate(int l, int r) impure {
 2 throw_unless(345 , l == r);
 3 }
 4 int main() {
 5
 evaluate(- 16504026364045218828290043625842588429559733737834269651744182593351491885
 2577 ,
 - 165040263640452188282900436258425884295597337378342696517441825933514918852577);
 6 return 0 ;
 7 }

 Figure 37.1: FunC code with constants out of valid range

 The successfully compiled output is shown below.

 Trail of Bits 83 TON Security Assessment
 CONFIDENTIAL

 1 " Asm.fif " include
 2 // automatically generated from `../crypto/func/opttest/TOB-TON-37.fc`
 3 PROGRAM {
 4 DECLPROC evaluate
 5 DECLPROC main
 6 evaluate PROC :<{
 7 EQUAL
 8 345 THROWIFNOT
 9 }>
 10 main PROC :<{
 11
 -165040263640452188282900436258425884295597337378342696517441825933514918852577
 PUSHINT
 12 DUP
 13 evaluate CALLDICT
 14 0 PUSHINT
 15 }>
 16 } END > c

 Figure 37.2: Generated Fift code with invalid constants

 When attempting execution using fift , the code produces a runtime error (Figure 37.3).

 1 $./crypto/fift -I ../crypto/fift/lib/ ./tob-ton-36.fif
 2 [1][t 0][2022 -10-06 07 :28:28.520341537][Fift.cpp:67] top: <text interpreter
 continuation>
 3 [1][t 0][2022 -10-06 07 :28:28.520520772][fift-main.cpp:204] Error
 interpreting file ̀ ./tob-ton-36.fif ̀ : tob-ton-36.fif:11:
 -165040263640452188282900436258425884295597337378342696517441825933514918852577:-?

 Figure 37.3: Attempted execution of Fift code from Figure 37.2

 Exploit Scenario
 The FunC compiler fails to validate the range of integral constants, resulting in incorrect
 code generation or code that will always cause an exception at runtime.

 Recommendations
 Short term, ensure that func fails with an error message for literal integer constants that
 are out of range.

 Long term, increase unit test and fuzzing coverage to explore these edge cases.

 Trail of Bits 84 TON Security Assessment
 CONFIDENTIAL

 38. Inconsistent runtime behavior for operations resulting in NaN

 Severity: Medium Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-38

 Target: func

 Description
 Consider the FunC code in Figure 38.1. The procedures f1 and f2 perform the same
 operation and differ only by how the denominator of the division is defined: Whereas f1
 immediately divides by zero, f2 accepts the denominator as an argument.

 1 int f1(int arg) {
 2 var v = arg / 0 ;
 3 if (arg == 3) {
 4 return v;
 5 } else {
 6 return 99 ;
 7 }
 8 }
 9
 10 int f2(int arg, int denom) {
 11 var v = arg / denom;
 12 if (arg == 3) {
 13 return v;
 14 } else {
 15 return 99 ;
 16 }
 17 }
 18
 19 int main() {
 20 return f1(2);
 21 ;; return f2(2, 0);
 22 }

 Figure 38.1: Data dependent evaluation that could result in operations on NaN values

 The successfully compiled output is shown below:

 1 DECLPROC f1
 2 DECLPROC f2
 3 DECLPROC main
 4 f1 PROC :<{
 5 PUSHNAN
 6 SWAP

 Trail of Bits 85 TON Security Assessment
 CONFIDENTIAL

 7 3 EQINT
 8 IFJMP: <{
 9 }>
 10 DROP
 11 99 PUSHINT
 12 }>
 13 f2 PROC :<{
 14 s1 s (- 1) PUXC
 15 DIV
 16 SWAP
 17 3 EQINT
 18 IFJMP: <{
 19 }>
 20 DROP
 21 99 PUSHINT
 22 }>
 23 main PROC :<{
 24 2 PUSHINT
 25 f1 CALLDICT
 26 }>

 Figure 38.2: Resulting fift-code from func-code in Figure 38.1

 When f1 is invoked, as occurs in main , the division-by-zero on line 2 of Figure 38.1 pushes
 a NaN to the stack on line 5 of Figure 38.2, and the function will always successfully return
 99 (unless arg equals 3). However, if a semantically equivalent call to f2 is made with
 arguments arg=2 and denom=0 , the division on line 15 of Figure 38.2 will always throw an
 exception, regardless of the value of arg . This is because division-by-zero at runtime always
 throws an exception.

 The following operators have been confirmed to have the same behavior for operations
 involving division-by-zero: ~/ , ̂/ , /= , ~/= , ̂/= , % , %= , ~%= , and ̂%= . However, this behavior
 does not seem to apply to operator /% .

 Bit shifts with out-of-range shift amounts (e.g., a left shift of 257 bits) result in similar
 behavior: If the number of bits is a constant, then the code compiles and runs correctly, but
 if the same value is used at runtime, then an exception is thrown.

 Exploit Scenario
 Semantically equivalent operations have different behavior, causing unexpected control
 flow on deployed smart contracts.

 Recommendations
 Short term, have func generate consistent code for every expression, regardless of
 whether it is calculated at runtime or compile time. If semantically equivalent code would
 throw an exception at runtime, then semantically equivalent compile-time-calculated
 expressions should at a minimum produce Fift code that would produce the same

 Trail of Bits 86 TON Security Assessment
 CONFIDENTIAL

 exception (e.g., code 4, the overflow exception). Since this scenario can be detected at
 compile time, a compiler warning should also be generated.

 Long term, increase unit test and fuzzing coverage to explore these edge cases. Consider
 elevating this warning to an irrecoverable compiler error.

 Trail of Bits 87 TON Security Assessment
 CONFIDENTIAL

 39. Missing _Bit-marker for positive integer 1

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-39

 Target: crypto/func/abscode.cpp

 Description
 Consider the code in Figure 39.1: It records properties of the represented integer constant
 based on its sign (line 150). If the integer constant has sign zero (line 160), indicating that
 the value is zero, then a check for if the value is one is made (line 161). If that check is
 successful, the _Bit marker is added (line 162). Clearly, the check on line 162 will never be
 true, since it is impossible for the sign (s) to be zero and for the constant to have value 1 at
 the same time.

 It appears that the conditional on lines 161–163 was intended to belong in the preceding
 branch (between lines 159 and 160), since that is the branch that would be taken if
 *int_const == 1 .

 150 int s = sgn(int_const);
 151 if (s < -1) {
 152 val |= _Nan | _NonZero;
 153 } else if (s < 0) {
 154 val |= _NonZero | _Neg | _Finite;
 155 if (*int_const == -1) {
 156 val |= _Bool;
 157 }
 158 } else if (s > 0) {
 159 val |= _NonZero | _Pos | _Finite;
 160 } else if (!s) {
 161 if (*int_const == 1) {
 162 val |= _Bit;
 163 }
 164 val |= _Zero | _Neg | _Pos | _Finite | _Bool | _Bit;
 165 }
 166 if (val & _Finite) {
 167 val |= int_const->get_bit(0) ? _Odd : _Even;
 168 }

 Figure 39.1: Source code responsible for recording properties of an integer as part of FunC code
 generation (crypto/func/abscode.cpp#150–168)

 Trail of Bits 88 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/crypto/func/abscode.cpp#L150-L168

 Exploit Scenario
 The FunC compiler is later changed to rely on the _Bit marker for positive integers with
 value one. The _Bit marker is not set, resulting in unexpected control flow.

 Recommendations
 Short term, consider moving the misplaced conditional into the preceding branch.

 Long term, increase unit test and fuzzing coverage to explore these edge cases.

 Trail of Bits 89 TON Security Assessment
 CONFIDENTIAL

 40. Method IDs can collide without warning

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-40

 Target: func

 Description
 The func compiler will emit Fift code for methods that have duplicate method IDs without
 a warning or an error. For example, the code in Figure 40.1 results in the Fift in Figure 40.2.

 1 int f1(int v) method_id(0) {
 2 return v + 1 ;
 3 }
 4
 5 int f2(int v) method_id(0) {
 6 return v + 1 ;
 7 }

 Figure 40.1: Two FunC methods with duplicate IDs

 1 " Asm.fif " include
 2 // automatically generated from `../crypto/func/opttest/TOB-TON-40.fc`
 3 PROGRAM {
 4 0 DECLMETHOD f1
 5 0 DECLMETHOD f2
 6 f1 PROC :<{
 7 INC
 8 }>
 9 f2 PROC :<{
 10 INC
 11 }>
 12 } END > c

 Figure 40.2: The resulting fift code from compiling the FunC code in Figure 40.1.

 When interpreted, this Fift code throws a runtime error, depicted in Figure 40.3.

 Trail of Bits 90 TON Security Assessment
 CONFIDENTIAL

 [1][t 0][2022-10-03 12:48:57.905150229][Fift.cpp:67] top: abort
 level 1: swap { <continuation 0x604000017890> } if **HERE** drop
 level 2: [in @PROC:<{:] over @fail-ifdef **HERE** 2 { <continuation 0x60400006ad50>
 } does null swap @doafter<{ 0 32 u,
 level 3: <text interpreter continuation>
 [1][t 0][2022-10-03 12:48:57.905294049][Fift.cpp:70] PROC:<{:procedure already
 defined
 [1][t 0][2022-10-03 12:48:57.906304393][Fift.cpp:67] top: tuck
 level 1: [in @addop:] tuck **HERE** sbitrefs @ensurebitrefs swap s,
 level 2: <text interpreter continuation>
 [1][t 0][2022-10-03 12:48:57.906356454][Fift.cpp:70] INC:stack underflow
 [1][t 0][2022-10-03 12:48:57.906594639][Fift.cpp:67] top: abort
 level 1: <text interpreter continuation>
 [1][t 0][2022-10-03 12:48:57.906634237][Fift.cpp:70] }>:not in asm context

 Figure 40.3: Output from interpreting the Fift code from Figure 40.2.

 The “ PROC:<{:procedure already defined ” error emitted by Fift does not provide any
 context about which procedure was already defined; if the FunC code contains many
 methods, this would be a difficult problem to debug.

 The method ID collision was caused by explicitly setting the IDs in the original FunC code of
 Figure 40.1. However, these collisions can naturally occur due to FunC’s use of CRC16
 checksums to automatically generate IDs from procedure names. The address space of
 CRC16 is very small; collisions will naturally occur. For example, over 87% of method ID
 values (57,322 out of a possible 65,535) have at least two dictionary words that, if used as
 method names, would produce the same method ID. Such colliding names include:

 ● “balanced” and “secret”
 ● “balance”, “get_abis”, “get_askc”, and “avlo”
 ● “seqno”, “kjob”, and “pconf”
 ● “get_public_key”, “last_eods”, and “nrk”
 ● “create_init_state”, “xgk”, “create_ahtg”, and “init_yshw”
 ● “withdrawer” and “likelihood”
 ● “liquidate” and “burial”

 Many of these names are used extensively throughout TON’s smart contracts with
 auto-generated, CRC16-based method IDs.

 Appendix I discusses how we discovered these method ID collisions and includes code for
 generating additional collisions.

 Exploit Scenario
 A smart contract author exposes two procedures whose auto-generated method IDs
 naturally collide, as in Figure 40.4. The FunC compiler neither emits an error nor a warning,

 Trail of Bits 91 TON Security Assessment
 CONFIDENTIAL

 producing the Fift code in Figure 40.5. When the contract is deployed, a runtime error
 occurs.

 1 (int) balanced() method_id { return 0 ; }
 2 (int) secret() method_id { return 1 ; }

 Figure 40.4: Two methods with auto-generated CRC16-based method IDs

 1 69469 DECLMETHOD balanced
 2 69469 DECLMETHOD secret
 3 balanced PROC :<{
 4 0 PUSHINT
 5 }>
 6 secret PROC :<{
 7 1 PUSHINT
 8 }>

 Figure 40.5: Both methods are assigned the same ID: 69469

 Recommendations
 Short term, emit an irrecoverable compiler error if any two procedures have the same
 method ID. Ensure that the runtime error emitted by Fift when it discovers duplicate
 procedures additionally includes the offending procedure name(s).

 Long term, consider switching to a different method of auto-generating method IDs that is
 less likely to cause collisions (e.g., a cryptographically secure hashing function with a larger
 address space).

 Trail of Bits 92 TON Security Assessment
 CONFIDENTIAL

 41. Single-line comments are honored within multi-line comments

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-41

 Target: func

 Description
 The FunC parser honors single-line comments even when they occur inside multi-line
 comments. This can lead to visually confusing code, as in Figure 41.1, where the single-line
 comment will gobble the closing multi-line comment delimiter at the end of line 3.

 1 {-
 2 this is a multi-line comment
 3 ;; this is a single-line comment inside of a multi-line comment -}
 4
 5 This is still inside the multi-line comment!

 Figure 41.1: A single-line comment inside of a multi-line comment, gobbling the -} delimiter

 Exploit Scenario
 A malicious contract author wants to obfuscate the behavior of their contract. This is very
 common in the Ethereum ecosystem , where malicious contract authors deploy contracts
 that appear to reward anonymous users by interacting with them, but instead are
 honeypots that steal the users’ funds.

 Consider the code in Figure 41.2. The author has made it appear as if a caller can withdraw
 a lot of funds from the contract on lines 4 through 6, when in fact those lines are
 commented out due to the single-line comment on line 2. The multi-line comment in fact
 ends on line 51. A user sees that they might stand to gain a lot of money by calling
 withdraw() , as long as their current balance is at least 10. So the victim ensures that they
 transfer at least 10 into the contract before calling withdraw() . In fact, the code will use
 the implementation of withdraw_amount() on line 102 that returns zero, trapping the
 user’s deposit in the contract.

 Trail of Bits 93 TON Security Assessment
 CONFIDENTIAL

https://cointelegraph.com/news/what-is-a-honeypot-crypto-scam-and-how-to-spot-it
https://cointelegraph.com/news/what-is-a-honeypot-crypto-scam-and-how-to-spot-it

 1 {- ;; this is a withdraw/deposit contract
 2 ;; anyone can withdraw all of the funds -}
 3
 4 (int) withdrawable_amount() method_id {
 5 return 1000000 ;
 6 }
 7
 8 (int , int) more_complicated_code_to_distract() {
 ︙
 51 }-}
 52
 53 () withdraw() impure {
 54 ;; code to require the sender to have a balance of at least ten
 55 ;; code to transfer withdrawable_amount() to the sender
 56 }
 57
 ︙

 102 (int) withdrawable_amount() method_id { return 0 ; }

 Figure 41.2: A malicious honeypot contract that is visually obfuscated. Everything before line 52
 is actually a comment

 Recommendations
 Short term, document this behavior.

 Long term, consider ignoring single-line comments within multi-line comments.

 Trail of Bits 94 TON Security Assessment
 CONFIDENTIAL

 42. Bitwise operators can cause the FunC compiler to crash

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-42

 Target: crypto/func/builtins.cpp

 Description
 Consider the FunC program in Figure 42.1.

 1 int nonzero() {
 2 return 2 ;
 3 }
 4
 5 int main() {
 6 throw_if(111 , 2 == (5 | 0 * nonzero()));
 7 return 0 ;
 8 }

 Figure 42.1: FunC code causing the func-compiler to abort on a CHECK -failure

 During compilation of the program, the func compiler will abort with a CHECK -failure at
 refcnt.hpp line 295. This is due to a VarDescr that is both _Const and _Int , but does
 not have an int_const member assigned.

 The code in Figure 42.2 is responsible for compiling the or-expression.

 511 AsmOp compile_or (std::vector<VarDescr>& res, std::vector<VarDescr>& args) {
 512 assert(res.size() == 1 && args.size() == 2);
 513 VarDescr &r = res[0], &x = args[0], &y = args[1];
 514 if (x.is_int_const() && y.is_int_const()) {
 515 r.set_const(x.int_const | y.int_const);
 516 x.unused();
 517 y.unused();
 518 return push_const(r.int_const);
 519 }
 520 r.val = emulate_or(x.val, y.val);
 521 return exec_op("OR" , 2);
 522 }

 Figure 42.2: Compiler function responsible for the |-operator
 (crypto/func/builtins.cpp#511–522)

 During compilation of the or-expression on line 6 of Figure 42.1, the x operand defined on
 line 513 of Figure 42.2 will be a constant int (5), while the y operand will not be constant.

 Trail of Bits 95 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/crypto/func/builtins.cpp#L511-L522

 This causes the emulate_or function (Figure 42.3) to be invoked using the respective
 argument characteristics (encoded in val).

 194 int emulate_or (int a, int b) {
 195 if (b & VarDescr::_Zero) {
 196 return a;
 197 } else if (a & VarDescr::_Zero) {
 198 return b;
 199 }
 200 int both = a & b, any = a | b;
 201 int r = VarDescr::_Int;
 202 if (any & VarDescr::_Nan) {
 203 return r | VarDescr::_Nan;
 204 }
 205 r |= VarDescr::_Finite;
 206 r |= any & VarDescr::_NonZero;
 207 r |= any & VarDescr::_Odd;
 208 r |= both & VarDescr::_Even;
 209 return r;
 210 }

 Figure 42.3: Function responsible for transforming operand characteristics to the resulting value
 for an | operation (crypto/func/builtins.cpp#194–210)

 In this particular case, b will be _Zero due to the multiplication with 0 in on line 6 of
 Figure 42.1. This returns the characteristics for a . Since a is both _Const and _Int , various
 locations in the code will automatically assume that it has a non-null int_const member.
 However, as is apparent from Figure 42.2, the int_const is never set. This will cause the
 func compiler to abort with CHECK and WriteError- exceptions when the int_const
 member is accessed.

 Additional similar discrepancies have been observed for other operators, such as
 emulate_and . For that particular case, it turns out that the ConstZero characteristic does
 not actually include the _Const marker, which would otherwise trigger additional CHECKs.

 Exploit Scenario
 A user writes valid FunC code, such as that of Figure 42.1. The compiler unexpectedly
 crashes with no indication of the offending code.

 Recommendations
 Ensure that the emulate_* -functions are in sync with the compile_* functions with
 respect to short circuit and constant operand behavior. For the particular case of
 compile_or , additional checks should be performed to see if the int_const member
 should be assigned and arguments marked as unused based on r.val . Further, consider if
 the ConstZero , ConstOne , and ConstTrue characteristics should include _Const .

 Long term, add test cases covering short circuiting behavior of FunC operators. Consider

 Trail of Bits 96 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/crypto/func/builtins.cpp#L194-L210

 adding automated code generation and fuzzing to the TON CI pipeline to explore edge
 cases automatically.

 Trail of Bits 97 TON Security Assessment
 CONFIDENTIAL

 43. FunC compiler can produce undefined opcodes

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-43

 Target: crypto/func/builtins.cpp

 Description
 The FunC compiler can produce bytecode containing the NEGPOW2 opcode, which is neither
 valid Fift nor a documented TVM opcode. For example, the FunC code in Figure 43.1
 produces this opcode.

 1 var foo() {
 2 return 1 ;
 3 }
 4
 5 (int) bar(int b) impure {
 6 return b;
 7 }
 8
 9 int main() {
 10 _ = bar(- 1 << foo());
 11 return 0 ;
 12 }

 Figure 43.1: The left shift of -1 on line 10 generates the NEGPOW2 opcode

 Exploit Scenario
 A FunC programmer performs a left shift on a constant valued -1, producing the NEGPOW2
 opcode. Fift fails to emit TVM for the resulting code since NEGPOW2 is not a valid opcode.

 Recommendations
 Short term, either implement and document the NEGPOW2 opcode, or change FunC’s code
 generation to use a different, valid opcode.

 Long term, add differential fuzz testing of FunC to the TON CI pipeline to ensure that no
 further crashes occur.

 Trail of Bits 98 TON Security Assessment
 CONFIDENTIAL

 44. Invalid syntax can cause the FunC compiler to crash

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-TON-44

 Target: crypto/func/abscode.cpp

 Description
 Consider the (incorrect) FunC code in Figure 44.1. It is a mixture of a variable declaration
 and function call in one statement. This is not valid FunC syntax, and it should produce a
 compiler error.

 1 #include "../../smartcont/stdlib.fc" ;
 2 () main() {
 3 var replace0c~udict_replace?(1 , 1 ,
 begin_cell().end_cell().begin_parse());
 4 }

 Figure 44.1: Incorrect FunC code triggering a compiler crash

 Instead of producing an error, the func compiler aborts due to an std::out_of_range
 exception not being caught. Line 246 in Op::split_var_list (Figure 44.2) is the source
 of the exception.

 243 void Op::split_var_list (std::vector<var_idx_t>& var_list, const
 std::vector<TmpVar>& vars) {
 244 int new_size = 0 , changes = 0 ;
 245 for (var_idx_t v : var_list) {
 246 int c = vars.at(v).coord;
 247 if (c < 0) {
 248 ++changes;
 249 new_size += (~c & 0xff);
 250 } else {

 Figure 44.2: Compiler code throwing the std::out_of_range -exception
 (crypto/func/abscode.cpp#243–250)

 When invoked, v holds the value -28746, which is not a valid index in the vars -vector.

 Exploit Scenario
 Incorrect FunC code is compiled using func causing a compiler crash.

 Trail of Bits 99 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/crypto/func/abscode.cpp#L243-L250

 Recommendations
 Short term, locate the root cause of the parse failure and correct it to prevent compiler
 crashes.

 Long term, add automated FunC code generation—both correct and incorrect—to the TON
 CI pipeline to ensure that no further crashes occur.

 Trail of Bits 100 TON Security Assessment
 CONFIDENTIAL

 45. Dictionary lookup can return incorrect results

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-TON-45

 Target: TVM

 Description
 Dictionary queries can return incorrect values, allowing unauthorized actions. Consider the
 FunC code in Figure 45.1.

 1 #include "../../smartcont/stdlib.fc" ;
 2 int vis(int v) asm "DUMPSTK" ;
 3 () main() {
 4 var c = new_dict();
 5 c~udict_set(256 , 0xb1a5ed00deadbeef , begin_cell().store_uint(1 ,

 1).end_cell().begin_parse());
 6 var (value, success) = c.udict_get?(128 , 0);
 7 throw_unless(222 , - 1 == success);
 8 var uval = vis(value~load_uint(1));
 9 throw_unless(333 , 1 == uval);
 10 }

 Figure 45.1: FunC code illustrating storing a dictionary entry and querying the dictionary for a
 different key

 A 256-bit key is added to the c dictionary on line 5. This is the only key in the dictionary. On
 the next line, a 128-bit key is queried. This query on line 6 should fail because, regardless of
 bit lengths, the one and only key stored in the dictionary does not have value zero.
 Therefore, we would expect line 7 to throw exception 222 because the query should not
 have resulted in success. However, when the code in Figure 45.1 is compiled and executed,
 success is true , indicating that the key exists, and line 7 does not throw an exception.
 Instead, exception 333 is thrown on line 9, indicating that the stored value is incorrect.
 At this point, for an udict_set using bit length 256, udict_get? would report success for
 key 0 using bit lengths 8, 16, 32, 64, and 128.

 The Fift code emitted by the FunC compiler appears to be correct, suggesting that this is an
 error in the TVM’s dictionary implementation.

 Exploit Scenario
 Consider the FunC code in Figure 45.2. Only certain addresses should be able to invoke
 do_owner_action . However, due to the incorrect bit length used in udict_get? , certain

 Trail of Bits 101 TON Security Assessment
 CONFIDENTIAL

 non-present keys would still be considered present. This allows unauthorized invokers to
 call do_owner_action , as shown in Figure 45.2.

 1 #include "../../smartcont/stdlib.fc" ;
 2
 3 () do_owner_action() impure;
 4
 5 () main() {
 6 var owners = new_dict();
 7 var owneraddress = 0xb1a5ed00deadbeef ;
 8 owners~udict_set(256 , owneraddress, begin_cell().store_uint(1 ,

 1).end_cell().begin_parse());
 9
 10 ;; ... other code
 11
 12 var invokeraddress = 0 ; ;; user controlled
 13 var (_, ok) = owners.udict_get?(128 , invokeraddress);
 14 throw_unless(333 , ok != true);
 15 do_owner_action();
 16 }

 Figure 45.2: Vulnerable FunC smart contract code allowing non-intended invokers to call
 do_owner_action

 Recommendations
 Short term, ensure that only keys actually stored in the dictionary are reported as present.

 Long term, implement automated FunC code generation that explores both intended and
 unintended usage of APIs. If dictionaries are intended to contain only keys of equal bit
 length, consider setting a dictionary’s bit length during construction rather than requiring
 the bit length on every dictionary operation.

 Trail of Bits 102 TON Security Assessment
 CONFIDENTIAL

 46. Dictionary insertion can inconsistently crash

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-TON-46

 Target: Undetermined

 Description
 Dictionary insertion is brittle and can inconsistently crash at runtime on valid FunC code.
 Consider the FunC code in Figure 46.1.

 1 #include "../../smartcont/stdlib.fc" ;
 2
 3 int main() {
 4 var val = begin_cell().store_uint(1 , 3).end_cell().begin_parse();
 5 var key = begin_cell().store_uint(2 , 2).end_cell().begin_parse();
 6
 7 var c = new_dict();
 8 c~idict_set(3 , 1 , val);
 9 c~dict_set(2 , key, val);
 10 return c.dict_empty?();
 11 }

 Figure 46.1: FunC smart contract code setting dictionary key using different key lengths.

 When the code is compiled and run, it will throw an exception code 9: error while
 parsing a dictionary node label . However, if an additional line of code is added
 between lines 8 and 9, such as in Figure 46.2, the program executes without error with
 main returning false , indicating that the dictionary is not empty. This type of inconsistent
 behavior can cause unexpected control flow when executed on-chain.

 ︙
 8 c~idict_set(3, 1, val);
 + c~udict_set(3 , 0 , val); ;; <-- this line is inserted
 9 c~dict_set(2, key, val);
 ︙

 Figure 46.2: The code from Figure 46.1 with a new line inserted

 Exploit Scenario
 A TON user deploys a semantically and syntactically correct FunC program similar to
 Figure 46.1 to mainnet. This contract will unexpectedly crash at runtime.

 Trail of Bits 103 TON Security Assessment
 CONFIDENTIAL

 Recommendations
 Short term, document the intended behavior for mixed dictionary operations and ensure
 the success of the dict_set? and related operations is not the result of intermediate calls.

 Long term, implement automated FunC code generation that explores both intended and
 unintended usage of APIs. Consider if the bit length should be a property set during
 construction of the dictionary, not the individual functions operating on the dictionary.

 Trail of Bits 104 TON Security Assessment
 CONFIDENTIAL

 47. Bitwise negation of false is not always true

 Severity: High Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-47

 Target: crypto/func/builtins.cpp

 Description
 The ~ (bitwise not) operator does not always result in true when applied to false
 variables, which can put funds at risk.

 Consider the FunC code in Figure 47.1.

 1 int func4() {
 2 return 12 ;
 3 }
 4
 5 var main() {
 6 var u = (12 == 0);
 7 throw_unless(990 , u == 0);
 8 throw_unless(989 , ~ u == - 1);
 9
 10 var z = (func4() == 0);
 11 throw_unless(988 , z == 0);
 12 throw_unless(987 , ~ z == - 1);
 13
 14 return 0 ;
 15 }

 Figure 47.1: FunC code that verifies basic boolean invariants.

 It is expected that the u and z variables hold the same value: false (equivalent to 0 in
 FunC). The result of the ~ operator on those variables should equal true (equivalent to -1
 in FunC). However, when this code is compiled and run, exception 987 is thrown on line 12.
 This indicates that ~ u is true , but ~ z is not true , despite the fact that they are both
 equal to zero.

 The FunC compiler appears to generate an incorrect, unconditional THROW 987 when
 generating code for line 12.

 Trail of Bits 105 TON Security Assessment
 CONFIDENTIAL

 Exploit Scenario
 A smart contract deployed on mainnet relies on the bitwise negation of a value. A
 comparison like that on line 12 of Figure 47.1 returns an incorrect result, affecting control
 flow in such a way that puts funds at risk.

 Recommendations
 Short term, ensure that the FunC compiler does not generate incorrect code for the bitwise
 not operator.

 Long term, consider implementing FunC property-based tests that verify that basic
 properties hold, regardless of whether a value is retrieved as the result of a more complex
 expression such as a function call or a simple expression.

 Trail of Bits 106 TON Security Assessment
 CONFIDENTIAL

 48. Setting the random number seed from the FunC standard library causes a
 stack misalignment

 Severity: Medium Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-48

 Target: crypto/smartcont/stdlib.fc

 Description
 The definition for the FunC standard library function set_seed is shown in Figure 48.1.

 206 int set_seed() impure asm "SETRAND" ;

 Figure 48.1: Definition of the set_seed FunC-function (crypto/smartcont/stdlib.fc#206)

 The function translates directly to the fift SETRAND instruction. According to the
 TVM-documentation , SETRAND pops the top of the stack and returns nothing. This is
 inconsistent with the function signature in Figure 48.1.

 Exploit Scenario
 Code similar to the example in Figure 48.2 is deployed on mainnet as a part of a more
 complex system.

 1 #include "../../smartcont/stdlib.fc" ;
 2
 3 var main() {
 4 var x = set_seed();
 5 return x;
 6 }

 Figure 48.2: Simplified deployment scenario invoking set_seed

 When compiled and executed, this code leaves the stack unaligned with respect to the
 function declaration. Figure 48.3 shows the trace resulting from running this code.

 1 implicit PUSH 0 at start
 2 execute SETCP 0
 3 execute DICTPUSHCONST 19 (xC_ , 1)
 4 execute DICTIGETJMPZ
 5 execute SETRAND
 6 handling exception code 2 : stack underflow
 7 default exception handler , terminating vm with exit code 2
 8 [3][t 0][2022-10-11 07 : 42 : 47.764668488][vm.cpp : 558] steps : 5 gas :

 Trail of Bits 107 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/crypto/smartcont/stdlib.fc#L206
https://ton-blockchain.github.io/docs/tvm.pdf

 used = 362 , max = 9223372036854775807 , limit = 9223372036854775807 , credit = 0
 9 0 2

 Figure 48.3: Trace from running code in 48.2, showing stack underflow

 In a more complex setting, this stack misalignment could potentially consume the incorrect
 stack value and cause unexpected control flow.

 Recommendations
 Short term, change the definition of set_seed to reflect the actual mechanics of the
 SETRAND instruction.

 Long term, ensure all API functions are properly tested. Consider implementing FunC- and
 Fift-based tests that verify that changes in stack depth are consistent with respect to the
 API being invoked.

 Trail of Bits 108 TON Security Assessment
 CONFIDENTIAL

 49. Querying a dictionary throws exception

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-49

 Target: FunC

 Description
 Queries for keys that do not exist in the dictionary throw an exception instead of returning
 false .

 Consider the FunC code in Figure 49.1:

 1 #include "../../smartcont/stdlib.fc" ;
 2 () main() {
 3 var c = new_dict();
 4 c~udict_set(16 , 1 , begin_cell().store_uint(1 ,

 1).end_cell().begin_parse());
 5 var (value, success) = c.udict_get?(9 , 1);
 6 throw_unless(222 , - 1 == success);
 7
 8 var uval = value~load_uint(1);
 9 throw_unless(333 , 1 == uval);
 10 }

 Figure 49.1: FunC code interaction with a dictionary

 When compiled and run, this code throws exception code 10: invalid dictionary
 fork node . As there is no key with value 1 of bit length 9 in the dictionary, the success
 should become false ; but instead the call to udict_get? throws.

 Exploit Scenario
 A token contract is deployed in which the dictionary access during token withdrawal is
 susceptible to the same error depicted in Figure 49.1. Any tokens transferred to the
 contract will be permanently stuck, never able to be withdrawn.

 Recommendations
 Short term, have the dictionary get-methods return false when a key is not found instead
 of throwing an exception. Consider extending the documentation to describe potential
 erroneous uses of dictionaries.

 Trail of Bits 109 TON Security Assessment
 CONFIDENTIAL

 Long term, implement automated FunC code generation that explores both intended and
 unintended usage of APIs. Consider if the bit length should be a property set during
 construction of the dictionary, not the individual functions operating on the dictionary.

 Trail of Bits 110 TON Security Assessment
 CONFIDENTIAL

 50. Compile time integer literal operations can result in unexpected control
 flow

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-TON-50

 Target: FunC

 Description
 Consider the FunC code in Figure 50.1. The call to the visualize function forces the
 compiler to emit the value it has computed into Fift code. The corresponding Fift can be
 found in Figure 50.2.

 1 () visualize(int val) impure {
 2 }
 3
 4 () main() {
 5 var var1 = 13 ;
 6 var var2 =

 - 55731313850089396453617415654096549532861344913190257876206230353862697404270 ;
 7 var v1 = var2 -

 99664187649475957411843735912904580990699370731212481732348405331054268664857 ;
 8
 9 visualize(v1);
 10
 11 var n = v1 | (- 7 / var1);
 12 visualize(n);
 13 }

 Figure 50.1: FunC code with two large integer literals

 1 " Asm.fif " include
 2 // automatically generated from `../crypto/func/opttest/intlit.fc`
 3 PROGRAM {
 4 DECLPROC visualize
 5 DECLPROC main
 6 visualize PROC :<{
 7 DROP
 8 }>
 9 main PROC :<{
 10 PUSHNAN
 11 DUP
 12 visualize CALLDICT
 13 DROP
 14 -1 PUSHINT

 Trail of Bits 111 TON Security Assessment
 CONFIDENTIAL

 15 visualize CALLDICT
 16 }>
 17 } END > c

 Figure 50.2: Fift program corresponding to FunC code in Figure 50.1

 First, on line 10 of Figure 50.2, it is evident that v1 is out of range, as it is a PUSHNAN
 instruction. However, on line 14 of Figure 50.2, an expression resulting from bitwise or with
 v1 and another expression results in an actual number, -1 . It is unexpected that an
 operation with NaN does not result in another NaN .

 Further, consider the FunC code in Figure 50.3 and its compiled Fift code in Figure 50.4.

 1 () visualize(var val) impure {
 2 }
 3
 4 () main() {
 5 visualize((- 1) >> 0);
 6 visualize((- 1) >> 255);
 7 visualize((- 1) >> 256);
 8 visualize((- 1) >> 257);
 9 }

 Figure 50.3: FunC code exercising a right shift operation

 1 " Asm.fif " include
 2 // automatically generated from `../crypto/func/opttest/shiftr.fc`
 3 PROGRAM {
 4 DECLPROC visualize
 5 DECLPROC main
 6 visualize PROC :<{
 7 DROP
 8 }>
 9 main PROC :<{
 10 -1 PUSHINT
 11 visualize CALLDICT
 12 -1 PUSHINT
 13 visualize CALLDICT
 14 -1 PUSHINT
 15 visualize CALLDICT
 16 PUSHNAN
 17 visualize CALLDICT
 18 }>
 19 } END > c

 Figure 50.4: Fift code resulting from the FunC code in Figure 50.3.

 On line 10 in Figure 50.4, an expected -1 is the result of (-1) >> 0 . On lines 12 and 14,
 the results of larger integer shifts are visible. From Figure 50.4, it is evident that the full 257
 bits can be shifted right, beyond which the result becomes NaN .

 Trail of Bits 112 TON Security Assessment
 CONFIDENTIAL

 Two right-shift operators are defined in section 5.3 of the documentation for TVM
 instructions. One of them is defined as a maximum shift of 256 bit positions, and the other
 as the maximum shift for 1024 bit positions.

 In this case, it is not clear which operation is actually implemented in the FunC compiler
 unless the resulting Fift code is manually inspected.

 Exploit Scenario
 An unsuspecting developer writes FunC code that during compile time is translated into
 values the developer did not anticipate, causing unexpected control flow at runtime.

 Recommendations
 Short term, ensure that code in Figure 50.2 and Figure 50.3 is translated as expected or
 correct it.

 Long term, document how the FunC compiler handles integer literal computations at
 compile time. For reference, the Solidity documentation on literal integer handling .

 Trail of Bits 113 TON Security Assessment
 CONFIDENTIAL

https://ton.org/docs/#/smart-contracts/tvm-instructions/instructions?id=_53-shifts-logical-operations
https://docs.soliditylang.org/en/v0.8.17/types.html#rational-and-integer-literals

 52. Ethereum bridge signature verification will always pass for address zero

 Severity: Informational Difficulty: Medium

 Type: Data Validation Finding ID: TOB-TON-52

 Target: bridge-solidity/contracts/SignatureChecker.sol

 Description
 The TON Ethereum bridge validates signatures using the ecrecover function (see
 Figure 52.1).

 41 require (ecrecover(prefixedHash, v, r, s) == sig.signer, "Wrong signature");

 Figure 52.1: The Solidity ecrecover function is used to validate signatures.
 (contracts/SignatureChecker.sol#41)

 The ecrecover function returns zero on failure, so if sig.signer == 0 , then any
 signature will be accepted regardless of whether or not it is cryptographically valid.

 This finding is informational because this function is currently called only when using
 msg.sender , which is validated to have been an oracle before the code in Figure 52.1 is
 executed (see Figure 52.2).

 25 require (isOracle[signer], "Unauthorized signer");

 Figure 52.2: sig.signer is implicitly verified to be an oracle. (contracts/Bridge.sol#25)

 Therefore, this will currently be an issue only if the zero address is ever added as an oracle.
 However, if the signature validation function is ever used from a different code path, or if
 an attacker discovers how to set the zero address as an oracle (or somehow bypass the
 check in Figure 52.2), this would be a critical finding.

 Exploit Scenario
 An attacker discovers a way to bypass the check in Figure 52.2, allowing them to execute
 fraudulent bridge transfers with invalid signatures.

 Recommendations
 Short term, add documentation to the Signature Checker contract to warn future
 developers that all signatures from the zero address will be accepted, regardless of
 whether or not they are valid.

 Trail of Bits 114 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/bridge-solidity/blob/master/contracts/SignatureChecker.sol#L41
https://github.com/ton-blockchain/bridge-solidity/blob/master/contracts/Bridge.sol#L25

 Long term, consider adding an additional check during signature validation to ensure that
 the signer is not the zero address.

 Trail of Bits 115 TON Security Assessment
 CONFIDENTIAL

 53. Context sensitivity of the ; token can lead to confusion and bugs

 Severity: Informational Difficulty: Low

 Type: Error Reporting Finding ID: TOB-TON-53

 Target: FunC

 Description
 The “ ; ” token is used both as an end-of-line delimiter (similar to the majority of
 programming languages) and to denote the beginning of a single-line comment (similar to
 Lisp). Since inter-token whitespace is significant in FunC, an errant space between two “ ; ”
 tokens (see line 3 of Figure 53.1 for an example) can silently turn what was intended to be a
 comment into an actual statement.

 1 int main() {
 2 var v1 = 12 ;
 3 ; ; v1 = 0 ;
 4 return v1 == 0 ;
 5 }

 Figure 53.1: Line 3 will be treated as a statement rather than a comment.

 Exploit Scenario
 A FunC programmer intends to comment out an old statement, as in line 2 of Figure 53.2.

 1 int main() {
 2 var v1 = 12 ; ; ; v1 = 0 ;
 3 return v1 == 0 ;
 4 }

 Figure 53.2: v1 will be reassigned value zero since there is whitespace between the last two
 semicolons on line 2.

 Since there is whitespace between the last two semicolons on line 2, v1 will be reassigned
 value zero, which is not what the programmer intended.

 Recommendations
 Short term, consider adding a compiler warning to FunC when there is an empty statement
 (i.e., an unnecessary end-of-statement “ ; ” delimiter). The last two semicolons on line 2 of
 Figure 53.2 would ideally each produce such a warning.

 Trail of Bits 116 TON Security Assessment
 CONFIDENTIAL

 Long term, consider deprecating the use of semicolons as single-line comments and
 switching to a less ambiguous token, like “ // ”. Also consider defining a formal grammar for
 FunC so (a) the parser can be automatically generated from the grammar, and (b) other
 tools can be developed to correctly parse FunC (e.g., linters and static analyzers that can
 detect bugs like this).

 Trail of Bits 117 TON Security Assessment
 CONFIDENTIAL

 Summary of Recommendations

 The TON TVM and Fift scripting language are in active development. Trail of Bits
 recommends that TON address the findings detailed in this report and take the following
 additional steps:

 ● Integrate automated linting using tools like Cppcheck (see Appendix E) into the TON
 continuous integration pipeline.

 ● Regularly fuzz test the codebase, particularly all entry points that accept untrusted
 user input.

 ● Improve unit tests to cover all TVM opcode families.

 ● Regularly run all unit and fuzz tests with LLVM sanitizers enabled (see Appendices D
 and G).

 ● Improve inline comments in the codebase.

 ● Implement integration tests that do not depend on third-party software
 (i.e., MyLocalTon).

 Trail of Bits 118 TON Security Assessment
 CONFIDENTIAL

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 119 TON Security Assessment
 CONFIDENTIAL

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 120 TON Security Assessment
 CONFIDENTIAL

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Trail of Bits 121 TON Security Assessment
 CONFIDENTIAL

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 122 TON Security Assessment
 CONFIDENTIAL

 C. Code Quality Recommendations

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 General recommendations
 ● Ensure that all classes obey the “rule of five.” Every C++ class that implements a

 custom destructor, copy-constructor, copy-assignment operator, move constructor,
 or move assignment operator should implement all five. For example, CellBuilder
 implements only three of the five:

 ●

 32 class CellBuilder : public td::CntObject {
 ︙
 48 CellBuilder();
 49 virtual ~CellBuilder() override ;
 ︙
 93 CellBuilder& operator =(const CellBuilder&);
 94 CellBuilder& operator =(CellBuilder&&);

 Figure C.1: CellBuilder does not obey the “rule of five”

 For more information, see:
 ● https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelin

 es.md#Rc-five
 ● https://en.cppreference.com/w/cpp/language/rule_of_three

 ● Use std::move only when absolutely necessary. The TON codebase includes
 many uses of std::move that are at best redundant, can sometimes prevent
 compiler optimizations, and at worst can lead to security findings like TOB-TON-1 .
 The codebase has 186 usages of std::move to return a value from a function.
 These are all unnecessary, and will in fact prevent the compiler from performing
 Named Return Value Optimization (NRVO), which would produce even more
 performant code than the std::move . You can detect such unnecessary moves by
 adding the -Wpessimizing-move and -Wredundant-move compiler options.

 ● Ensure the system can be built with Address Sanitizer enabled.
 The CMakeLists.txt file includes an option to enable Address Sanitizer. The
 system cannot be built when Address Sanitizer is enabled because it detects leaks
 that interfere with the build process. This applies to, for example, test-vm ,
 test-smartcont , and test-fift . Use of Address Sanitizer is highly
 recommended, but given the current state of the build, it is hard to identify actual

 Trail of Bits 123 TON Security Assessment
 CONFIDENTIAL

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five
https://en.cppreference.com/w/cpp/language/rule_of_three

 leaks or memory corruptions. Our primary recommendation is to fix memory leaks
 or to suppress them using ASAN suppressions .

 ● The func- and fift-programs leak memory.
 When running func and fift with Address Sanitizer enabled, memory leaks are
 reported, as shown in the example in Figure C.2. If that code is executed using fift ,
 Address Sanitizer reports leaks.

 1 recursive append- long -bytes {
 2 over Blen over <= { drop B, } {
 3 B| <b swap 127 append- long -bytes b> -rot B, swap ref,
 4 } cond
 5 } swap !

 Figure C.2: Fift code that triggers leak detection

 To help narrow down the source of leaks, the
 lsan_do_recoverable_leak_check() -function can be invoked at different
 points of a program; memory leaks are detected upon destruction. We used this
 approach to detect that the class fift::Fift is responsible for memory leaks.

 For the func binary, memory leaks are detected related to the Expr class. The
 source code suggests these leaks are intentional. We recommend fixing the memory
 leaks using known patterns, such as std::shared_ptr or the Ref - and
 Cnt -templates used elsewhere in the TON-blockchain. Alternatively, we recommend
 suppressing known leaks using ASAN suppressions to avoid missing any unintended
 leaks.

 ● Use of deprecated openssl-functions.
 When compiling the tdutils library, compiler warnings about deprecated
 functions are emitted. Among them are the functions MD5 , AES_cbc_encrypt , and
 AES_set_decrypt_key . Although we were not able to attribute any security issue
 to the use of deprecated functions, we recommend replacing them with the
 recommended, non-deprecated versions to prevent any future issues.

 ● FunC double negation expressions fail to compile.
 Consider the code in Figure C.3.

 1 int main() {
 2 return ~ - 1 ;
 3 }

 Figure C.3: FunC code with double negation

 When compiling using func, the code fails with the message error: identifier
 expected instead of `-` . However, if the expression is rewritten as ~ (- 1); ,

 Trail of Bits 124 TON Security Assessment
 CONFIDENTIAL

https://clang.llvm.org/docs/AddressSanitizer.html#issue-suppression

 it compiles. This indicates a potential expression parsing issue with repeated unary
 expressions. We recommend fixing this and adding additional test cases to ensure
 that similar uncommon patterns can also be compiled. Failure to compile the code
 in Figure C.3 could indicate a more serious underlying problem.

 ● Prefer range-based for loops and STL algorithms over explicit indexing.
 Consider the code in Figure C.4.

 114 for (size_t idx = 0 ; idx < in_desc_.size(); idx++) {
 115 if (in_desc_[idx] == desc) {
 116 in_desc_[idx].cat_mask |= desc.cat_mask;
 117 return ;
 118 }
 119 }

 Figure C.4: Loop with explicit index (adnl/adnl-network-manager.hpp#114–119)

 We recommend using range-based for instead of index-based loops to clarify
 intent. For the particular case described here, using std::find would make the
 purpose clear. Our general recommendation is to prefer range-based for over
 explicit indexing and named algorithms over range-based for , as applicable.

 ● Throw by value, catch by (const) reference.
 When using C++ exceptions, we recommend throwing by value and catching by
 reference to const. This prevents issues with object slicing in inheritance hierarchies.
 There are a number of locations in the code base where exceptions are caught by
 value, such as block.cpp , mc-config.cpp , and check-proof.cpp . Catching by value
 could also be an issue when the copy constructor of the exception class throws, as
 that will invoke std::terminate() .

 ● Ensure that all test cases can be successfully run in CI.
 When running the test-smartcont test binary, it will exit due to
 [0][t 0][2022-07-15 07:55:14.058572432][test-smartcont.cpp:1197]
 Check `manual.write().send_external_message(set_query).code == 0`
 failed .
 Additionally, several of the test case files in the crypto/func/test directory fail to
 compile, such as the a6_2.fc test file.
 We recommend enforcing successful execution of test cases as part of CI to prevent
 code quality and test coverage degradation over time.

 crypto/vm/dict.cpp:

 ● Do not call virtual methods during object construction. If the validate
 argument to any of the constructors of DictionaryBase is set to true , the

 Trail of Bits 125 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/adnl/adnl-network-manager.hpp#L114-L119
https://github.com/ton-blockchain/ton/blob/master/crypto/block/block.cpp#L1870-L1880
https://github.com/ton-blockchain/ton/blob/master/crypto/block/mc-config.cpp#L222-L226
https://github.com/ton-blockchain/ton/blob/master//validator/impl/check-proof.cpp#L293-L314
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.cpp#L35
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.cpp#L35

 force_validate() function will be invoked. This will in turn invoke the virtual
 method validate() .

 Invoking the base-class version of a virtual method during object construction might
 not work as expected; see
 https://isocpp.org/wiki/faq/strange-inheritance#calling-virtuals-from-ctors .

 AugmentedDictionary appears to override the validate method , but it handles
 the situation by invoking force_validate() in each of its own constructors .

 crypto/vm/cells/CellUsageTree.cpp :

 ● Consider passing arguments by reference if they can never be nullptr .
 In the mark_path function of the cell usage tree node, if the master_tree
 argument is ever nullptr and the build has NDEBUG defined, then there will be a
 null pointer dereference on line 57. Passing master_tree as CellUsageTree&
 would prevent this at compile time.

 51 bool CellUsageTree::NodePtr::mark_path(CellUsageTree* master_tree)
 const {
 52 DCHECK(master_tree);
 53 auto tree = tree_weak_.lock();
 54 if (tree.get() != master_tree) {
 55 return false ;
 56 }
 57 master_tree->mark_path(node_id_);
 58 return true ;
 59 }

 Figure C.5: The master_tree pointer can be changed to a reference

 This function does not appear to ever be called in a context where master_tree
 could be nullptr , but it could be added in the future.

 validator-session/validator-session-state.cpp :

 ● Dereferencing a null pointer is undefined behavior . Several log messages
 (e.g., line 1427) either explicitly or implicitly (via the << operator override on
 lines 60–62) dereference the action pointer, which can be null. Explicitly check
 whether action is nullptr before dereferencing it.

 crypto/test/modbigint.cpp :
 ● Ensure the required C++ version is aligned with the features used.

 In CMakeLists.txt , the required C++ version is set to 14.

 Trail of Bits 126 TON Security Assessment
 CONFIDENTIAL

https://isocpp.org/wiki/faq/strange-inheritance#calling-virtuals-from-ctors
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.h#L595
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.cpp#L2459
https://isocpp.org/wiki/faq/references#refs-not-null
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator-session/validator-session-state.cpp#L1427
https://github.com/ton-blockchain/ton/blob/36fbe3a2acda90fb92826b114e71ac08a8e53438/validator-session/validator-session-state.cpp#L60

 82 set(CMAKE_CXX_STANDARD 14)
 83 set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
 84 set(CMAKE_CXX_EXTENSIONS FALSE)

 Figure C.6: C++ version configuration (CMakeLists.txt#82–84)

 However, in several locations of modbigint.cpp , static_assert is used without a
 message. Use of static_assert without a message is a C++17 feature.

 78 static_assert (M >= N);

 Figure C.7: Use of C++ 17 feature (crypto/test/modbigint.cpp#78)

 crypto/smartcont/stdlib.fc :
 ● FunC standard library calls that implicitly end cells are unintuitive. For

 example, the FunC standard library function ~udict_set_builder resolves to the
 Fift opcode DICTUSETB , which implicitly adds an ENDC operation . In usages of
 standard library functions like ~udict_set_builder (e.g., here), the presence of
 begin_cell() but lack of an associated end_cell() will look like a bug to a FunC
 programmer who is not also familiar with the entire TVM instruction set. This could
 be made more clear by renaming begin_cell() to create_cell_builder() ,
 because that is closer to the semantics of what the command is actually doing.

 crypto/vm/box.hpp :
 ● The Box class has a single mutable member but all methods are const . It is not

 clear why this is the case. If there is a compelling reason for this pattern, document
 it in the code. If not, consider making the data_ variable a regular member and
 remove the const qualifier from all methods that mutate it.

 crypto/func/analyzer.cpp :
 ● Intentional use of bit-wise OR to avoid short-circuiting should be documented.

 Several usages of the bit-wise OR operator—particularly in this file, but also
 throughout the codebase—eschew the logical OR operator, presumably to require
 the side effects of the right-hand argument that would otherwise be short-circuited
 if the left-hand argument were false. This behavior should be documented to
 prevent future developers from converting the bitwise operators to logical
 operators.

 Trail of Bits 127 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/CMakeLists.txt#L82-L84
https://github.com/ton-blockchain/ton/blob/4b940f8bad9c2d3bf44f196f6995963c7cee9cc3/crypto/test/modbigint.cpp#L78
https://github.com/ton-blockchain/ton/blob/35d17249e6b54d67a5781ebf26e4ee98e56c1e50/crypto/smartcont/stdlib.fc#L151
https://github.com/ton-blockchain/ton/blob/35d17249e6b54d67a5781ebf26e4ee98e56c1e50/crypto/smartcont/elector-code.fc#L263-L268

 D. Risks of Undefined Behavior in C++

 The C++ standard imposes no restrictions on the observable operation of a program that
 executes undefined behavior, such as accessing memory outside of array bounds, null
 pointer dereferencing, signed integer overflow, and bit-shifting by negative values.
 Although a program is capable of operating normally even if it executes undefined
 behavior, there is no guarantee of this. In fact, most compilers can and will silently break
 programs containing undefined behavior in subtle, hard-to-catch ways, particularly when
 applying optimizations.

 Examples of Undefined Behavior
 For example, consider the following program that has a negative bit-shift on line 3:

 1 int main (int argc, char ** argv) {
 2 if (argc > 1) {
 3 return 1234 << -2 ;
 4 } else {
 5 return 0 ;
 6 }
 7 }

 Figure B.1: A simple program that exhibits undefined behavior on line 3

 With optimizations enabled, the latest version of the clang compiler will correctly identify
 the undefined behavior on line 3 and completely optimize out the entire first half of the
 branch. The resulting assembly for the compiled program—that always returns zero
 regardless of the inputs—is given in Figure B.2.

 1 main: # @ main
 2 xorl % eax , % eax
 3 retq

 Figure B.2: The assembly listing for the program in Figure B.1 compiled with optimizations.

 A more insidious example of the dangers of undefined behavior is given in Figure B.3,
 below:

 Trail of Bits 128 TON Security Assessment
 CONFIDENTIAL

 1 #include <limits>
 2 #include <cstdint>
 3 #include <iostream>
 4 int main (int argc, char *argv[]) {
 5 uint32_t u0 = std::numeric_limits< uint32_t >::max();
 6 uint32_t u1 = u0 + 1 ;
 7
 8 if (u1 < u0) {
 9 std::cout << "Unsigned wrap!" << std::endl;
 10 }
 11 std::cout << "u0: " << u0 << " u1: " << u1 << std::endl;
 12
 13 int32_t i0 = std::numeric_limits< int32_t >::max();
 14 int32_t i1 = i0+ 1 ;
 15
 16 if (i1 < i0) {
 17 std::cout << "Signed wrap!" << std::endl;
 18 }
 19 std::cout << "i0: " << i0 << " i1: " << i1 << std::endl;
 20 }

 Figure B.3: A real-world example of the dangers of undefined behavior

 When compiled without optimizations enabled, the code will print

 Unsigned wrap!
 u0: 4294967295 u1: 0
 Signed wrap!
 i0: 2147483647 i1: -2147483648

 as would be expected.

 However, line 14 contains a signed integer overflow, which is undefined behavior. With
 optimizations enabled, clang will optimize away the entire if statement on lines 16
 through 18 and instead print

 Unsigned wrap!
 u0: 4294967295 u1: 0
 i0: 2147483647 i1: -2147483648

 How to Detect Undefined Behavior
 Although some types of undefined behavior can be caught at compile time by static
 analyzers like cppcheck and clang-tidy, most undefined classes of behavior are highly
 dependent on runtime context. Clang and gcc both have undefined behavior
 sanitizers (ubsan) that can instrument the code to report when the program encounters

 Trail of Bits 129 TON Security Assessment
 CONFIDENTIAL

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

 undefined behavior during execution. We recommend running all unit and fuzz tests with
 ubsan enabled.

 Trail of Bits 130 TON Security Assessment
 CONFIDENTIAL

 E. Automated Static Analysis

 This appendix describes the setup of the automated analysis tools used in this audit.

 Though static analysis tools frequently report false positives, they detect certain categories
 of issues with essentially perfect precision, such as memory leaks, misspecified format
 strings, and use of unsafe APIs. We recommend that you periodically run these static tools
 and review their findings.

 Cppcheck

 To install Cppcheck, we followed the instructions on the official website . We ran the tool
 with all analyses enabled:

 cppcheck --enable=all --inconclusive . 2> cppcheck.txt

 The tool helped us to find the issue described in TOB-TON-4 as well as some of the issues
 described in the code quality appendix .

 Trail of Bits 131 TON Security Assessment
 CONFIDENTIAL

https://cppcheck.sourceforge.io/

 F. Automated Dynamic Analysis

 This appendix describes the setup of the automated dynamic analysis tools and test
 harnesses used during this audit.

 In most software, testing typically includes only unit and integration tests. These types of
 tests detect the presence of functionality that adheres to the expected specification.
 However, they do not account for other potential behaviors that an implementation may
 have.

 Fuzzing and property testing complement both unit and integration testing through the
 identification of extra behavior in a component of a system. Test cases are generated and
 subsequently provided to a component of the system as input. Upon execution, properties
 of the component are observed for deviations from expected behaviors.

 The primary difference between fuzzing and property testing is the method of generating
 inputs and observing behavior. Fuzzing typically attempts to provide random or randomly
 mutated inputs in an attempt to identify edge cases in entire components. Property testing
 typically provides inputs sequentially or randomly within a given format, checking to ensure
 a specific property of the system holds upon each execution.

 By developing fuzzing and property testing alongside the traditional set of unit and
 integration tests, the overall security posture and stability of a system is likely to improve
 since edge cases and unintended behaviors can be pruned during the development
 process.

 libFuzzer-Based Test Cases for TON

 We have included a collection of fuzz tests that uses libFuzzer , an in-process,
 coverage-guided, evolutionary fuzzing engine integrated into Clang. These tests cover a
 variety of deserialization and processing functions, as well as functions that handle
 untrusted inputs. We integrated them into the build process to improve the coverage of the
 TVM and Fift code. For instance, figures F.1 and F.2 show the libFuzzer tests that we created
 to automatically generate both valid and invalid TVM opcode sequences.

 #include <algorithm>

 #include "vm/vm.h"
 #include "vm/cp0.h"
 #include "vm/dict.h"
 #include "td/utils/tests.h"

 std::string run_vm(td::Ref<vm::Cell> cell) {
 vm::init_op_cp0();
 vm::DictionaryBase::get_empty_dictionary();

 Trail of Bits 132 TON Security Assessment
 CONFIDENTIAL

https://llvm.org/docs/LibFuzzer.html

 class Logger : public td::LogInterface {
 public :

 void append(td::CSlice slice) override {
 res.append(slice.data(), slice.size());

 }
 std::string res;

 };
 static Logger logger;
 logger.res = "" ;
 td::set_log_fatal_error_callback([](td::CSlice message) {

 td::default_log_interface->append(logger.res);
 });
 vm::VmLog log { &logger, td::LogOptions::plain() };
 log.log_options.level = verbosity_FATAL;
 log.log_options.fix_newlines = true ;
 td::set_verbosity_level(verbosity_PLAIN);
 auto total_data_cells_before = vm::DataCell::get_total_data_cells();
 SCOPE_EXIT {

 auto total_data_cells_after = vm::DataCell::get_total_data_cells();
 ASSERT_EQ(total_data_cells_before, total_data_cells_after);

 };

 vm::Stack stack;
 vm::GasLimits gas_limit(1000 , 1000);

 vm::run_vm_code(vm::load_cell_slice_ref(cell), stack, 0 /*flags*/ ,
 nullptr /*data*/ , std::move(log) /*VmLog*/ , nullptr ,

 &gas_limit);
 return logger.res; // must be a copy

 }

 td::Ref<vm::Cell> to_cell(const unsigned char *buff, int bits) {
 return vm::CellBuilder().store_bits(buff, bits, 0).finalize();

 }

 /* run_vm_code */
 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

 run_vm(to_cell(Data, std::min(Size* 8 , static_cast < size_t >(1023))));
 return 0 ;

 }

 Figure F.1: A libFuzzer test for running automatically generating possibly invalid TVM opcode
 sequences.

 /*
 * vm_instr_fuzz.cpp
 *
 * Created on: 14 Jul 2022
 * Author: hbrodin
 */

 Trail of Bits 133 TON Security Assessment
 CONFIDENTIAL

 #include <algorithm>

 #include "vm/vm.h"
 #include "vm/cp0.h"
 #include "vm/dict.h"
 #include "td/utils/tests.h"

 std::string run_vm(td::Ref<vm::Cell> cell) {
 vm::init_op_cp0();
 vm::DictionaryBase::get_empty_dictionary();

 class Logger : public td::LogInterface {
 public :

 void append(td::CSlice slice) override {
 res.append(slice.data(), slice.size());

 }
 std::string res;

 };
 static Logger logger;
 logger.res = "" ;
 td::set_log_fatal_error_callback([](td::CSlice message) {

 td::default_log_interface->append(logger.res);
 });
 vm::VmLog log { &logger, td::LogOptions::plain() };
 log.log_options.level = verbosity_FATAL;
 log.log_options.fix_newlines = true ;
 td::set_verbosity_level(verbosity_PLAIN);
 auto total_data_cells_before = vm::DataCell::get_total_data_cells();
 SCOPE_EXIT {

 auto total_data_cells_after = vm::DataCell::get_total_data_cells();
 ASSERT_EQ(total_data_cells_before, total_data_cells_after);

 };

 vm::Stack stack;
 vm::GasLimits gas_limit(1000 , 1000);

 vm::run_vm_code(vm::load_cell_slice_ref(cell), stack, 0 /*flags*/ ,
 nullptr /*data*/ , std::move(log) /*VmLog*/ , nullptr ,

 &gas_limit);
 return logger.res; // must be a copy

 }

 td::Ref<vm::Cell> to_cell(const unsigned char *buff, int bits) {
 return vm::CellBuilder().store_bits(buff, bits, 0).finalize();

 }

 void serialize(const uint8_t *data, size_t size) {

 size_t consumed = 0 ;
 size_t nfinalized = 0 ;
 std::vector<td::Ref<vm::Cell>> cells;

 Trail of Bits 134 TON Security Assessment
 CONFIDENTIAL

 while (consumed < size) {
 auto avail = size-consumed;
 auto avail_bits = avail* 8 ;
 //auto consume_bits = std::min(avail_bits, 1023ul);
 auto consume_bits = std::min(avail_bits, 257ul);
 auto consume_bytes = consume_bits/ 8 + 1 ; // roughly...

 vm::CellBuilder cb;
 cb.store_bits(data + consumed, consume_bits, 0);

 bool stop = false ;
 if (nfinalized >= vm::Cell::max_refs) {

 for (size_t ci =
 nfinalized-vm::Cell::max_refs;ci<nfinalized;ci++) {

 if (!cb.store_ref_bool(cells[ci])) {
 stop = true ;
 break ;

 }
 }

 }
 if (stop)

 break ;
 if (cb.get_depth() > vm::Cell::max_depth)

 break ;
 cells.push_back(cb.finalize());
 nfinalized++;
 consumed += consume_bytes;

 }
 if (cells.empty())

 return {};
 return cells.back();

 }

 /* run_vm_code_specific */
 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

 auto cells = to_cells(Data, Size);
 if (!cells)

 return -1 ;
 run_vm(*cells);
 return 0 ;

 }

 Figure F.2: A libFuzzer test for running automatically generating valid TVM opcode sequences.

 These tests cover the following functionality:

 ● Feeds randomly generated cells to Vm::run_vm_code to uncover memory safety,
 undefined behavior, and abrupt termination errors.

 Trail of Bits 135 TON Security Assessment
 CONFIDENTIAL

 ● Feeds randomly generated cells containing valid instructions to Vm::run_vm_code
 to uncover memory safety, undefined behavior, and abrupt termination errors.

 Setting Up the Tests

 To build the libFuzzer tests, we recommend using Clang++ version 10.0 or newer. The
 CXXFLAGS variable will need to be modified in the makefile to include the
 -fsanitize=fuzzer,address,undefined flag. This flag will enable the fuzzer as well as
 the AddressSanitizer and UndefinedBehaviorSanitizer detectors to catch subtle issues that
 may not cause the program crash.

 Measuring Coverage

 Regardless of how inputs are generated, an important task after running a fuzzing
 campaign is to measure its coverage. To do so, we used Clang's source-based code
 coverage feature . This feature can be enabled by adding the --enable-cov flag to the
 CXXFLAGS variable. We recommend keeping a separate build to measure coverage
 because this flag could be incompatible with the libFuzzer instrumentation.

 Integrating Fuzzing and Coverage Measurement into the Development
 Cycle

 Once the fuzzing procedure has been tuned to be fast and efficient, it should be properly
 integrated in the development cycle to catch bugs. We recommend adopting the following
 procedure to integrate fuzzing using a CI system:

 1. After the initial fuzzing campaign, save the corpora that is generated for every test.

 2. For every internal development milestone, new feature, or public release, rerun the
 fuzzing campaign for at least 24 hours starting with the current corpora for each
 test.

 3. Update the corpora with the new inputs generated.

 Note that, over time, the corpora will come to represent thousands of CPU hours of
 refinement and will be very valuable for guiding efficient code coverage during fuzz testing.
 However, an attacker could also use them to quickly identify vulnerable code. To mitigate
 this risk, we recommend keeping the fuzzing corpora in an access-controlled storage
 location rather than a public repository. Some CI systems allow maintainers to keep a
 cache to accelerate building and testing. The corpora could be included in such a cache if
 they are not very large. For more on fuzz-driven development, see the CppCon 2017 talk
 given by Google’s Kostya Serebryany .

 Trail of Bits 136 TON Security Assessment
 CONFIDENTIAL

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf

 Designing Testable Systems
 Modern software development best practices typically lead to easier implementation of
 fuzzing and property testing. System modularity, use of reusable libraries, a centralized
 configuration system, and isolated execution all help ease the development of testing
 harnesses.

 By forming a system of modular components, each component can be tested
 independently. This typically reduces the complexity of each component’s test harness, as
 well as helps improve the overall efficiency of testing since test coverage can usually be
 more easily achieved through independent configuration, and expensive-to-test
 components do not affect the testing of other components.

 Compounding the use of modular components, reusing libraries helps improve test
 coverage, since the libraries themselves can be tested directly. For example, if an
 application uses a function defined in such a library, but the path required to gain coverage
 of the function is difficult for the test harness to reach, this is not as much of a concern
 since the function is independently testable. This applies to all components that re-use
 these libraries.

 Identifying Properties and Choosing Their Test Methods
 To make fuzzing and property testing effective, it’s important to choose the appropriate
 testing method and baseline properties for expected behaviors. This process varies
 depending on the target, but the same general approach applies.

 Evaluating the expected behaviors of a system is often an easy way to identify properties to
 test. For example, consider a marketplace application that allows users to purchase listed
 items in bulk through a JSON API. Properties to test might include:

 ● Users should only be able to submit orders in valid JSON to the API.
 ● Users should not be able to view a listing if the supply is 0.
 ● Users should not be able to purchase more than the available supply.

 Given these properties of the system, we can evaluate which properties would be most
 suitable for fuzzing. For the first property, we are evaluating the correctness of the API’s
 JSON parser for potential flaws that could lead to the malicious parsing of invalid JSON. A
 fuzzer is likely the best approach for this property since it is targeting parser logic, which
 typically involves mutating inputs over time either randomly or sequentially to gain path
 coverage.

 The remaining properties extend deeper into the system, beyond the parsing of the JSON.
 In this case, we know the format of the order JSON, and want to test how the parameters of
 an order affect our properties. Therefore, property testing is likely the best approach. We

 Trail of Bits 137 TON Security Assessment
 CONFIDENTIAL

 can build property tests to ensure these properties hold before, during, and after all
 interactions with the API. Conditions for these might be as follows:

 ● Users should not be able to view a listing if the supply is 0.
 ○ If listing.visible == true and listing.supply > 0

 ■ The listing is visible with available supply.
 ○ If listing.visible == false and listing.supply == 0

 ■ The listing is not visible and has no available supply.
 ● Users should not be able to purchase more than the available supply.

 ○ If listing.supply <= listing.initial_supply
 ■ The listing supply has not exceeded the initial supply.

 Given property tests for these conditions, potential issues—such as if listing.supply is
 defined as a uint , with facile order validations such as (listing.supply -
 order.amount) > 0 ? listing.fulfill(order) : listing.deny(order) —could
 result in a situation such as (10 - 11) > 0 evaluating to true due to unsigned integer
 underflow. This could lead to subsequent validations failing to apply, influencing
 listing.visible and listing.supply and resulting in undefined behavior.

 Automated FunC Test Case Generation
 We used two similar but slightly different automated techniques to detect issues in FunC
 compilation. Both methods are based on automatically generated FunC source code,
 which is then compiled and run. The first method we employed aimed at finding
 optimization differentials, in which the generated code differs depending on the selected
 optimization level in the FunC compiler. This has previously been a problem for other
 blockchains (1 , 2 , 3). The second method attempts to validate the generated code
 according to a model. Both approaches are described in the following subsections.

 The benefit to using these techniques is that combinations of code patterns, both sensical
 and nonsensical, are rapidly tested. As demonstrated in Figure F.3. and Figure F.4, this is
 evidently a start. Additionally, both techniques can easily be extended (and combined into
 one) to cover more of the FunC code generation.

 Di�erential testing by optimization level
 The Python code in Figure F.3 illustrates the process we used to detect optimization
 differentials. The overall concept is to construct an expression (in this case, very basic
 expressions), then compile it using different optimization levels. Finally, in order to confirm
 that the results are equal, the compiled target functions are glued together using Fift code
 that ensures the two different functions evaluate to the same value.

 During evaluation, additional data (e.g., log files from Undefined Behavior Sanitizer and
 Address Sanitizer) is collected. This allows the automatic identification of additional issues.

 Trail of Bits 138 TON Security Assessment
 CONFIDENTIAL

https://github.com/ethereum/solidity-blog/blob/499ab8abc19391be7b7b34f88953a067029a5b45/_posts/2022-06-15-inline-assembly-memory-side-effects-bug.md
https://github.com/ethereum/solidity-blog/blob/499ab8abc19391be7b7b34f88953a067029a5b45/_posts/2017-05-03-solidity-optimizer-bug.md
https://github.com/ethereum/solidity-blog/blob/499ab8abc19391be7b7b34f88953a067029a5b45/_posts/2019-03-26-solidity-optimizer-and-abiencoderv2-bug.md#two-unrelated-bugs

 The code in Figure F.3 was used to detect TOB-TON-30 .

 Trail of Bits 139 TON Security Assessment
 CONFIDENTIAL

 1 import glob
 2 import os
 3 import random
 4 import subprocess
 5
 6 from itertools import combinations
 7 from pathlib import Path
 8
 9 func = "./crypto/func"
 10 fift = "./crypto/fift"
 11 fift_inc = "../crypto/fift/lib/"
 12 ineqality_error = 999
 13
 14 ubsan_base = "ubsan.log*"
 15 eval_func_name = "eval"
 16
 17
 18 def gen_expr (vars , ops, nops):
 19 ints = [str (random.randint(- 2 , 10)) for x in vars]
 20 operands = vars + ints
 21 selected_vars = random.choices(operands, k=nops)
 22 selected_ops = random.choices(ops, k=nops)
 23 return " " .join([x for t in zip (selected_vars, selected_ops) for x in

 t][:- 1])
 24
 25
 26 def gen_res (i, vars , unops, ops, assign_ops, nops):
 27 varname = f "result { i } "
 28 expr = gen_expr(vars , ops, nops)
 29 pre = random.choice(unops + [""])
 30 expr = f " { pre } { expr } "
 31
 32 if random.randint(0 , 5) == 1 :
 33 # Choose any of the existing variables and reassign it
 34 v = random.choices(vars , k= 1)[0]
 35 aop = random.choices(assign_ops, k= 1)[0]
 36 decl = f " { v } { aop } { expr } ;"
 37 return (None , decl)
 38 else :
 39 # Create a new variable and assign to it
 40 decl = f "var { varname } = { expr } ;"
 41 return (varname, decl)
 42
 43
 44 def gen_eval_func (nlines, nops):
 45 v = ["l" , "r"]

 Trail of Bits 140 TON Security Assessment
 CONFIDENTIAL

 46 binops = ["*" , "/" , "~/" , "^/" , "%" , "&" , "+" , "-" , "|" , "^" , "<<" , ">>" ,
 "~>>" , "^>>"] #, "==", "!=", "<", "<=", ">", ">=", "<=>"]
 47 unops = ["~" , "-"]
 48 assign_ops = ["+=" , "-=" , "*=" , "/=" , "~/=" , "^/=" , "%=" , "~%=" , "^%=" ,

 "<<=" , ">>=" , "~>>=" , "^>>=" , "&=" , "|=" , "^="]
 49 ret = f "int { eval_func_name } (int l, int r) {{\n"
 50 for i in range (0 ,nlines):
 51 (n, p) = gen_res(i, v, unops, binops, assign_ops, nops)
 52 if n:
 53 v.append(n)
 54 ret += f " { p } \n"
 55 return ret + f " return { v[- 1] } ;\n}}\n"
 56
 57
 58 def gen_eval_fc (working_dir, nlines, nops):
 59 evfc = working_dir / "eval.fc"
 60 with open (evfc, "w") as f:
 61 f.write(gen_eval_func(nlines, nops))
 62 return evfc
 63
 64
 65 def gen_eval_fif (eval_fc, working_dir, optlevel):
 66 tmpfif = working_dir / "tmp.fif"
 67 ofif = working_dir / f "evalO { optlevel } .fif"
 68 try :
 69 subprocess.check_call([func, "-o" , tmpfif, f "-O { optlevel } " , eval_fc])
 70 with open (tmpfif, "r") as f:
 71 s = f.read()
 72 with open (ofif, "w") as fw:
 73 fw.write(s.replace(eval_func_name, f " { eval_func_name } O { optlevel } "))
 74 return ofif
 75 except :
 76 return None
 77
 78
 79 def archive_file (i, src, target_dir):
 80 if src.exists():
 81 dst_name = target_dir / f " { src.name } . { i } "
 82 os.rename(src, dst_name)
 83
 84
 85 def locate_ubsan_file (working_dir, base=ubsan_base):
 86 l = glob.glob(base, root_dir=working_dir)
 87 if l:
 88 return working_dir / l[0]
 89 return None

 Trail of Bits 141 TON Security Assessment
 CONFIDENTIAL

 90
 91
 92 def drop_ubsan_files (working_dir, base=ubsan_base):
 93 for f in glob.glob(base, root_dir=working_dir):
 94 os.unlink(working_dir / f)
 95
 96
 97 def archive_files (i, working_dir: Path, target_dir):
 98 print (f "Error detected, archiving to { target_dir } using i: { i } ")
 99 archive_file(i, working_dir / "eval.fc" , target_dir)
 100 archive_file(i, working_dir / "comparison1.fif" , target_dir)
 101 archive_file(i, working_dir / "comparison2.fif" , target_dir)
 102 archive_file(i, working_dir / "comparison_error.txt" , target_dir)
 103 ubsan = locate_ubsan_file(working_dir)
 104 if ubsan:
 105 archive_file(i, ubsan, target_dir)
 106
 107
 108 def gen_comparison_fif (i, working_dir, o0, o2, argl= 1 , argr= 2):
 109 with open (o0, "r") as fo0:
 110 o0src = fo0.read()
 111 with open (o2, "r") as fo2:
 112 o2src = fo2.read()
 113
 114 fif = (f '"Asm.fif" include\n'
 115 f 'PROGRAM{{\n'
 116 f ' { o0src } \n'
 117 f ' { o2src } \n'
 118 f 'DECLPROC main\n'
 119 f 'main PROC:<{{\n'
 120 f '\t { argl } PUSHINT\n'
 121 f '\t { argr } PUSHINT\n'
 122 f '\t { eval_func_name } O0 CALLDICT\n'
 123 f '\t { argl } PUSHINT\n'
 124 f '\t { argr } PUSHINT\n'
 125 f '\t { eval_func_name } O2 CALLDICT\n'
 126 f '\tEQUAL\n'
 127 f '\t { ineqality_error } THROWIFNOT\n'
 128 f '}}>\n'
 129 f '}}END>s\n'
 130 f 'dup\n'
 131 #f'dup csr.\n'
 132 f 'runvmdict .s\n'
 133)
 134
 135 dst = working_dir / f "comparison { i } .fif"

 Trail of Bits 142 TON Security Assessment
 CONFIDENTIAL

 136 with open (dst, "w") as dstf:
 137 dstf.write(fif)
 138 return dst
 139
 140
 141 def run_comparison (compare_fif):
 142 return subprocess.run([fift, "-I" , fift_inc, compare_fif],
 stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 143
 144
 145 def run_comparison_both_ways (working_dir, o0fif, o2fif, l, r):
 146 compfif1 = gen_comparison_fif(1 , working_dir, o0fif, o2fif, l, r)
 147 compfif2 = gen_comparison_fif(2 , working_dir, o2fif, o0fif, l, r)
 148
 149 ret1 = run_comparison(compfif1)
 150 ret2 = run_comparison(compfif2)
 151
 152 def _dump_ret (r1, r2):
 153 dstfile = working_dir / "comparison_error.txt"
 154 with open (dstfile, "w") as f:
 155 f.write(f "r1.returncode: { r1.returncode } \n")
 156 f.write(f "r2.returncode: { r2.returncode } \n")
 157
 158 f.write(f "r1.stdout: { str (r1.stdout, 'utf-8') } \n")
 159 f.write(f "r2.stdout: { str (r2.stdout, 'utf-8') } \n")
 160
 161 f.write(f "r1.stderr: { str (r1.stderr, 'utf-8') } \n")
 162 f.write(f "r2.stderr: { str (r2.stderr, 'utf-8') } \n")
 163 return dstfile
 164
 165 if ret1.returncode != ret2.returncode:
 166 return _dump_ret(ret1, ret2)
 167 if ret1.stdout != ret2.stdout:
 168 return _dump_ret(ret1, ret2)
 169 if bytes (f "0 { ineqality_error } " , "utf-8") in ret1.stdout:
 170 return _dump_ret(ret1, ret2)
 171
 172 # OK!
 173 return None
 174
 175
 176 def main ():
 177 working_dir = Path(os.getcwd()) / "compile_eval"
 178 if not working_dir.exists():
 179 os.mkdir(working_dir)
 180

 Trail of Bits 143 TON Security Assessment
 CONFIDENTIAL

 181 func_compile_fails = working_dir / "func_fail"
 182 if not func_compile_fails.exists():
 183 os.mkdir(func_compile_fails)
 184
 185 ubsan_dir = working_dir / "ubsan"
 186 if not ubsan_dir.exists():
 187 os.mkdir(ubsan_dir)
 188
 189 fift_run_fails = working_dir / "fift_fail"
 190 if not fift_run_fails.exists():
 191 os.mkdir(fift_run_fails)
 192
 193 print (f "Working dir is { working_dir } ")
 194
 195 i= 0
 196
 197 inputs = combinations([- 1 , - 2 , - 100000 , 0 , 1 , 2 , 100000], 2)
 198
 199 while True :
 200 drop_ubsan_files(working_dir)
 201 # Construct a new evaluation FunC file
 202 evfc = gen_eval_fc(working_dir, 3 , 4)
 203 assert (evfc)
 204
 205 # Create optimized and non optimized fif-versions of it
 206 o2fif = gen_eval_fif(evfc, working_dir, 2)
 207 if not o2fif:
 208 archive_files(i, working_dir, func_compile_fails)
 209 i+= 1
 210 continue
 211
 212 o0fif = gen_eval_fif(evfc, working_dir, 0)
 213 if not o0fif:
 214 archive_files(i, working_dir, func_compile_fails)
 215 i+= 1
 216 continue
 217
 218 # Run the comparison both ways, and for several different args. If any
 output, make sure to archive the files
 219 for (l, r) in inputs:
 220 ret = run_comparison_both_ways(working_dir, o0fif, o2fif, l, r)
 221 if ret:
 222 archive_files(i, working_dir, fift_run_fails)
 223 i+= 1
 224
 225 if __name__ == "__main__" :

 Trail of Bits 144 TON Security Assessment
 CONFIDENTIAL

 226 main()

 Figure F.3: Basic Python program used to detect optimization differentials

 Verifying results according to a model
 The code in Figure F.4 is another approach we used to validate the FunC compiler
 implementation. For this case, we construct a Python model for FunC expression and then
 generate arbitrary such expressions. Similar to the optimization differential evaluation
 case, we use a tiny amount of handwritten Fift code to perform the evaluation. The model
 computed value is hardcoded into the Fift program, after which the FunC-generated code is
 run. Finally, the results are compared to ensure they are equal.

 A merit of this approach is that the model does not have to be completely accurate as long
 as it does not produce too many false positives. It can be iteratively refined to be more and
 more accurate as issues are triaged to be either real findings or model errors.

 This approach identified several issues, among them TOB-TON-42 , TOB-TON-43 , and
 TOB-TON-47 .

 Trail of Bits 145 TON Security Assessment
 CONFIDENTIAL

 1 import operator
 2 import random
 3 import subprocess
 4
 5 from math import ceil
 6
 7
 8 # Attempts to construct an expression in python of arbitrary large integers

 and evaluate the corresponding
 9 # FunC counterpart
 10
 11 class Expr :
 12 def eval (self):
 13 """Return evaluated result, min, max intermediate values"""
 14 assert False
 15
 16 def __repr__ (self):
 17 assert False
 18
 19
 20 class Value (Expr):
 21 def __init__ (self , value = None):
 22 # 25% chance of large integers
 23 if value is None :
 24 self .val = random.randint(- 2 ** 256 , 2 ** 256) if random.randint(0 , 4) == 0

 else random.randint(- 16 , 16)
 25 else :
 26 self .val = value
 27
 28 def eval (self):
 29 return (self .val, self .val, self .val)
 30
 31 def __repr__ (self):
 32 return f " {self .val } "
 33
 34 class Variable (Value):
 35 name_idx = 0
 36 instances = []
 37
 38 def __init__ (self):
 39 super (). __init__ ()
 40 self .name = f "var { Variable.name_idx } "
 41 Variable.name_idx += 1
 42 Variable.instances.append(self)
 43
 44 def definition (self):

 Trail of Bits 146 TON Security Assessment
 CONFIDENTIAL

 45 return f "var {self .name } = {self .eval()[0] } ;\n"
 46
 47 @staticmethod
 48 def reset ():
 49 Variable.name_idx = 0
 50 Variable.instances = []
 51
 52 def __repr__ (self):
 53 return self .name
 54
 55 class FunctionCall (Value):
 56 name_idx = 0
 57 instances = []
 58
 59 def __init__ (self):
 60 super (). __init__ ()
 61 self .name = f "func { FunctionCall.name_idx } "
 62 FunctionCall.name_idx += 1
 63 FunctionCall.instances.append(self)
 64
 65 def definition (self):
 66 return f "var {self .name } () {{\n\treturn {self .eval()[0] } ;\n}}\n"
 67
 68 @staticmethod
 69 def reset ():
 70 FunctionCall.name_idx = 0
 71 FunctionCall.instances = []
 72
 73 def __repr__ (self):
 74 return f " {self .name } ()"
 75
 76
 77 class UnOp (Expr):
 78 def __init__ (self , opstr, opf, arg):
 79 self .opstr = opstr
 80 self .opf = opf
 81 self .arg = arg
 82
 83 def eval (self):
 84 ares, amin, amax = self .arg.eval()
 85 res = self .opf(ares)
 86 return (res, min (amin, res), max (amax, res))
 87
 88 def __repr__ (self):
 89 return f "({self .opstr } {self .arg })"
 90

 Trail of Bits 147 TON Security Assessment
 CONFIDENTIAL

 91 class Invert (UnOp):
 92 def __init__ (self , arg):
 93 super (). __init__ ('~' , operator.invert, arg)
 94
 95 class Negate (UnOp):
 96 def __init__ (self , arg):
 97 super (). __init__ ('-' , operator.neg, arg)
 98
 99 class BinOp (Expr):
 100 def __init__ (self , opstr, opf, l, r):
 101 self .opstr = opstr
 102 self .opf =opf
 103 self .l = l
 104 self .r = r
 105
 106 def eval (self):
 107 lres, lmin, lmax = self .l.eval()
 108 rres, rmin, rmax = self .r.eval()
 109 res = self .opf(lres, rres)
 110 return (res, min (lmin, rmin, res), max (lmax, rmax, res))
 111
 112 def __repr__ (self):
 113 return f "({self .l } {self .opstr } {self .r })"
 114
 115 class Add (BinOp):
 116 def __init__ (self , l, r):
 117 super (). __init__ ('+' , operator.add, l, r)
 118
 119 class Sub (BinOp):
 120 def __init__ (self , l, r):
 121 super (). __init__ ('-' , operator.sub, l, r)
 122
 123
 124 class Mul (BinOp):
 125 def __init__ (self , l, r):
 126 super (). __init__ ('*' , operator.mul, l, r)
 127
 128 class Div (BinOp):
 129 def __init__ (self , l, r):
 130 super (). __init__ ('/' , operator.floordiv, l, r)
 131
 132 class DivRound (BinOp):
 133 def __init__ (self , l, r):
 134 super (). __init__ ('~/' , lambda x,y: round (operator.truediv(x, y)), l, r)
 135
 136 class DivCeil (BinOp):

 Trail of Bits 148 TON Security Assessment
 CONFIDENTIAL

 137 def __init__ (self , l, r):
 138 super (). __init__ ('^/' , lambda x,y: ceil(operator.truediv(x, y)), l, r)
 139
 140 class Mod (BinOp):
 141 def __init__ (self , l, r):
 142 super (). __init__ ('%' , operator.mod, l, r)
 143
 144 class BitAnd (BinOp):
 145 def __init__ (self , l, r):
 146 super (). __init__ ('&' , operator.and_, l, r)
 147
 148 class BitOr (BinOp):
 149 def __init__ (self , l, r):
 150 super (). __init__ ('|' , operator.or_, l, r)
 151
 152 class BitXor (BinOp):
 153 def __init__ (self , l, r):
 154 super (). __init__ ('^' , operator.xor, l, r)
 155
 156 class ShiftLeft (BinOp):
 157 def __init__ (self , l, r):
 158 super (). __init__ ('<<' , operator.lshift, l, r)
 159
 160 def eval (self):
 161 rres, rmin, rmax = self .r.eval()
 162 if rres < 0 or rres > 1023 :
 163 raise ValueError ("ShiftLeft out of range")
 164
 165 lres, lmin, lmax = self .l.eval()
 166 res = self .opf(lres, rres)
 167 return (res, min (lmin, rmin, res), max (lmax, rmax, res))
 168
 169 class ShiftRight (BinOp):
 170 def __init__ (self , l, r):
 171 super (). __init__ ('>>' , operator.rshift, l, r)
 172
 173 def eval (self):
 174 rres, rmin, rmax = self .r.eval()
 175 if rres < 0 or rres > 1023 :
 176 raise ValueError ("ShiftRight out of range")
 177
 178 lres, lmin, lmax = self .l.eval()
 179 res = self .opf(lres, rres)
 180 return (res, min (lmin, rmin, res), max (lmax, rmax, res))
 181
 182 tvm_true = - 1

 Trail of Bits 149 TON Security Assessment
 CONFIDENTIAL

 183 tvm_false = 0
 184 tvm_one = 1
 185 tvm_zero = tvm_false
 186 tvm_minus_one = tvm_true
 187
 188 class Rel (BinOp):
 189 """Converts into tvm_bools"""
 190 def __init__ (self , opstr, evalf, l, r):
 191 super (). __init__ (opstr, lambda x, y: tvm_true if evalf(x, y) else
 tvm_false, l, r)
 192
 193 class Eq (Rel):
 194 def __init__ (self , l, r):
 195 super (). __init__ ('==' , operator.eq, l, r)
 196
 197 class Neq (Rel):
 198 def __init__ (self , l, r):
 199 super (). __init__ ('!=' , operator.ne, l, r)
 200
 201 class Lt (Rel):
 202 def __init__ (self , l, r):
 203 super (). __init__ ('<' , operator.lt, l, r)
 204
 205 class Gt (Rel):
 206 def __init__ (self , l, r):
 207 super (). __init__ ('>' , operator.gt, l, r)
 208
 209 class Le (Rel):
 210 def __init__ (self , l, r):
 211 super (). __init__ ('<=' , operator.le, l, r)
 212
 213 class Ge (Rel):
 214 def __init__ (self , l, r):
 215 super (). __init__ ('>=' , operator.ge, l, r)
 216
 217 class IntComp (BinOp):
 218 @staticmethod
 219 def cmp (l, r):
 220 if l < r:
 221 return tvm_minus_one
 222 elif l > r:
 223 return tvm_one
 224 else :
 225 return tvm_zero
 226
 227 def __init__ (self , l, r):

 Trail of Bits 150 TON Security Assessment
 CONFIDENTIAL

 228 super (). __init__ ('<=>' , IntComp.cmp, l, r)
 229
 230 def gen_expr ():
 231
 232 ops = [Add, Sub, Mul, Div, BitAnd, BitOr, BitXor, Mod, Invert, Negate,
 ShiftLeft, ShiftRight, Eq, Neq, Lt, Gt, Le, Ge, IntComp]
 233 n = random.randint(0 , 2 * len (ops))
 234 if n < len (ops):
 235 op = ops[n]
 236 if issubclass (op, BinOp):
 237 return op(gen_expr(), gen_expr())
 238 elif issubclass (op, UnOp):
 239 return op(gen_expr())
 240 elif n < len (ops)* 1.25 :
 241 return Variable()
 242 elif n < len (ops)* 1.75 :
 243 return FunctionCall()
 244 else :
 245 return Value()
 246
 247 while True :
 248
 249 Variable.reset()
 250 FunctionCall.reset()
 251
 252 e = gen_expr()
 253
 254 expect_fail = False
 255 bits_needed = 0
 256 try :
 257 evaluated, min_val, max_val = e.eval()
 258 expect_fail = min_val < - 2 ** 256 or max_val > 2 ** 256
 259 except ZeroDivisionError :
 260 expect_fail = True
 261 # Just do a comparison with a dummy value, expecting a overflow anyway
 262 evaluated = 777
 263 except ValueError :
 264 expect_fail = True
 265 evaluated = 999
 266 except OverflowError :
 267 expect_fail = True
 268 evaluated = 888
 269
 270 expr = str (e)
 271
 272 varlist = "\n" .join(["\t" + x.definition() for x in Variable.instances])

 Trail of Bits 151 TON Security Assessment
 CONFIDENTIAL

 273 functions = "\n" .join([x.definition() for x in FunctionCall.instances])
 274 program = (
 275 f " { functions } \n"
 276 f "() evaluate(int l, int r) impure {{\n"
 277 f "\tthrow_unless(345, l == r);\n"
 278 f "}}\n"
 279 f "int main() {{\n"
 280 f " { varlist } \n"
 281 f "\tevaluate({ expr } , { evaluated });\n"
 282 f "\treturn 0;\n"
 283 f "}}"
 284)
 285
 286 # print(f"---------\n{program}\n--------")
 287 ret = subprocess.run(["./crypto/func" , "-I" , "-P" , "-A"],
 input = bytes (program, 'utf-8'), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 288
 289 slice_not_cell = ret.stdout.decode('utf-8').replace("END>c" , "END>s")
 290 vmrun = f " { slice_not_cell } \nrunvmdict .s\n"
 291
 292 with open ('currfift.fif' , 'w') as f:
 293 f.write(vmrun)
 294 ret = subprocess.run(["./crypto/fift" , "-I" , "../crypto/fift/lib" ,
 "currfift.fif"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 295
 296 successful = ret.returncode == 0 or ret.returncode == 1
 297 out = ret.stdout.decode("utf-8")
 298 err = ret.stdout.decode("utf-8")
 299
 300 failed_eq = "0 345" in out
 301 failed_overflow = "0 4" in out
 302 failed_outofrange = "0 5" in out
 303
 304
 305 did_fail = failed_eq or failed_overflow or failed_outofrange or not
 successful
 306
 307 if did_fail and not expect_fail or expect_fail and not did_fail:
 308 print (f "\n===\n")
 309 print ("PROGRAM:\n")
 310 print (program)
 311 print ("FIFT:\n")
 312 print (vmrun)
 313 print (f "Returncode { ret.returncode } \n")
 314 print (f "Out: { out } \n")
 315 print (f "Err: { err } \n")

 Trail of Bits 152 TON Security Assessment
 CONFIDENTIAL

 316 print (f "Expected fail: { expect_fail } \n")
 317 print (f "Min value: { min_val } \n")
 318 print (f "Max value: { max_val } \n")
 319 print (f "Bits needed for intermediate { bits_needed } \n")
 320 print (f "Did fail { did_fail } \n\tfailed_eq:
 { failed_eq } \n\tfailed_overflow: { failed_overflow } \n\tfail_outofrange:
 { failed_outofrange } \n\tnot successful: { not successful } \n")
 321 print (f "===\n")

 Figure F.4: Evaluation of FunC compilation using a Python model

 Trail of Bits 153 TON Security Assessment
 CONFIDENTIAL

 G. Compiler Mitigations

 Compiler settings were not audited during the engagement. We recommend reviewing the
 settings in order to harden production builds as much as possible. The following table lists
 the basic compiler flags that should be used for hardening.

 GCC or Clang Flag What It Enables or Does

 -z noexecstack

 This flag marks the program’s data sections (including
 the stack and heap) as non-executable (NX).

 This makes it more difficult for an attacker to execute
 shellcode. Attackers who wish to bypass NX must resort
 to return-oriented programming (ROP), an exploitation
 method that is more difficult as well as less reliable
 across different builds of a program. This mitigation is
 enabled by default.

 -Wl,-z,relro,-z,now

 This flag enables full RELRO (relocations read-only).
 Segments are read-only after relocation, and lazy
 bindings are disabled.

 It is a mitigation technique used to harden the data
 sections of an ELF process. It has three modes of
 operation: disabled, partial, and full. When a program
 uses a function from a dynamically loaded library, the
 function address is stored in the GOT.PLT section
 (Global Offset Table for Procedure Linkage Table).

 When RELRO is disabled, each function address entry in
 the GOT.PLT table points to a dynamic resolver that
 resolves the entry to the actual address of the intended
 function when it is first called. In such a case, the
 memory location of the address is both readable and
 writable. As a result, an attacker who has control over
 the process control flow could change the entry of a
 given function in GOT.PLT to point to any other
 executable address. For example, the attacker could
 change the puts function's GOT.PLT entry to point to a
 system function. Then, if the program called
 puts(“bin/sh”) , system(“/bin/sh”) would be
 called instead. When RELRO is fully enabled, the
 dynamic resolver resolves all of the addresses upon a
 program’s startup and changes the permissions of data

 Trail of Bits 154 TON Security Assessment
 CONFIDENTIAL

 sections (and therefore GOT.PLT) to read-only.

 -fstack-protector-all

 Or (less secure):

 -fstack-protector-strong
 --param ssp-buffer-size=4

 This flag adds stack canaries for all functions. Note that
 this flag may affect the collector’s performance.

 Stack canaries (stack cookies) make it more difficult to
 exploit buffer overflow vulnerabilities. A stack canary is
 a global randomly generated value that is copied to the
 stack between the stack variables and stack metadata in
 a function's prologue. When a function returns, the
 canary on the stack is checked against the global value.
 The program exits if there is a mismatch, making it
 more difficult for an attacker to overwrite the return
 address on the stack. In certain circumstances, attackers
 may be able to bypass this mitigation by leaking the
 cookie through a separate information leak vulnerability
 or by brute-forcing the cookie byte by byte.

 To protect only functions that have buffers, use the
 alternative version indicated.

 -fPIE -pie
 This flag compiles the source as a PIE , which ASLR
 depends on.

 -D_FORTIFY_SOURCE=2 -O2

 Or (less secure):

 -D_FORTIFY_SOURCE=1 -O1

 This flag enables FORTIFY_SOURCE protections. These
 protections require an appropriate optimization flag
 (-O1 or -O2).

 The protection is a glibc-specific feature that enables a
 series of mitigations primarily aimed at preventing
 buffer overflows. With a FORTIFY_SOURCE level of 1,
 glibc will add compile-time warnings when potentially
 unsafe calls to common libc functions (e.g., memcpy
 and strcpy) are made. With a FORTIFY_SOURCE level of
 2, glibc will add more stringent runtime checks to these
 functions and enable a number of lesser-known
 mitigations. For example, it will disallow the use of the
 %n format specifier in format strings that are not
 located in read-only memory pages. This will prevent
 overwriting data (and gaining code execution) with
 format string vulnerabilities.

 The latter version is less secure, as it enables only
 compile-time measures; the former adds additional

 Trail of Bits 155 TON Security Assessment
 CONFIDENTIAL

 runtime checks, which may affect the collector’s
 performance.

 -fstack-clash-protection

 This flag adds checks to functions that may allocate a
 large amount of memory on the stack to ensure that the
 new stack pointer and stack frame will not overlap with
 another memory region, such as the heap.

 It mitigates a "stack clash vulnerability" in which a
 program's stack memory region grows so much that it
 overlaps with another memory region. This bug makes
 the program confuse the stack memory address with
 another memory address (e.g., that of the heap); as a
 result, the regions’ data will overlap, which could lead to
 a denial of service or to control flow hijacking. The stack
 clash protection mitigation adds explicit memory
 probing to any function that allocates a large amount of
 stack memory; when explicit memory probing is used,
 the function's stack allocation will never make the stack
 pointer jump over the stack memory guard page, which
 is located before the stack.

 -fsanitize=cfi
 -fvisibility=hidden
 -flto

 (Clang/LLVM only)

 This flag enables CFI checks that help prevent control
 flow hijacking.

 -fsanitize=safe-stack

 (Clang/LLVM only)

 This flag enables SafeStack , which splits the stack
 frames of certain functions into a safe stack and an
 unsafe stack, making hijacking of the program's control
 flow more difficult (Clang/LLVM only).

 -Wall -Wextra -Wpedantic
 -Wshadow -Wconversion
 -Wformat -security

 This flag enables compile-time checks and warnings.

 System What It Enables or Does

 ASLR (Address Space Layout
 Randomization)

 This feature randomizes the memory location of each
 section of the program. This makes it more difficult for
 an attacker to write reliable exploits, primarily by
 impeding jumps to ROP gadgets. ASLR requires

 Trail of Bits 156 TON Security Assessment
 CONFIDENTIAL

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/SafeStack.html

 cooperation from both the system and the compiler.

 To fully support ASLR, a program must be compiled as a
 position-independent executable (PIE). Most of the
 Linux distributions have ASLR enabled. This can be
 checked by reading the value stored in the
 /proc/sys/kernel/randomize_va_space file: 0
 means that ASLR is disabled, 1 means it is partially
 enabled (only some bits of the addresses are
 randomized), and 2 means it is fully enabled. This file is
 writable, and an admin can disable or enable the
 mitigation. An information leak in the program may
 enable an attacker to bypass ASLR.

 Trail of Bits 157 TON Security Assessment
 CONFIDENTIAL

 H. Opcode Timing and Gas Analysis

 We implemented a utility to compare the timing of VM execution against the gas used. The
 goal was to discover opcodes or opcode sequences that consume an inordinate amount of
 computational resources relative to their gas cost. Its source code is listed in Figure H.1.

 The utility expects two command line arguments, each a hex string: The TVM code used to
 set up the stack and VM state followed by the TVM code to measure. For example, to test
 the DIVMODC opcode:

 $ test-timing 80FF801C A90E 2>/dev/null
 OPCODE,runtime mean,runtime stddev,gas mean,gas stddev
 A90E,0.0066416,0.00233496,26,0

 The runtime is listed in milliseconds.

 #include <ctime>
 #include <iomanip>

 #include "vm/vm.h"
 #include "vm/cp0.h"
 #include "vm/dict.h"
 #include "fift/utils.h"
 #include "common/bigint.hpp"

 #include "td/utils/base64.h"
 #include "td/utils/tests.h"
 #include "td/utils/ScopeGuard.h"
 #include "td/utils/StringBuilder.h"

 td::Ref<vm::Cell> to_cell(const unsigned char *buff, int bits) {
 return vm::CellBuilder().store_bits(buff, bits, 0).finalize();

 }

 long double timingBaseline;

 typedef struct {
 long double mean;
 long double stddev;

 } stats;

 struct runInfo {
 long double runtime;
 long long gasUsage;
 int vmReturnCode;

 runInfo() : runtime(0.0), gasUsage(0), vmReturnCode(0) {}
 runInfo(long double runtime, long long gasUsage, int vmReturnCode) :

 runtime(runtime), gasUsage(gasUsage), vmReturnCode(vmReturnCode) {}

 runInfo operator +(const runInfo& addend) const {
 return {runtime + addend.runtime, gasUsage + addend.gasUsage, vmReturnCode ? vmReturnCode :

 addend.vmReturnCode};

 Trail of Bits 158 TON Security Assessment
 CONFIDENTIAL

 }

 runInfo& operator +=(const runInfo& addend) {
 runtime += addend.runtime;
 gasUsage += addend.gasUsage;
 if (!vmReturnCode && addend.vmReturnCode) {
 vmReturnCode = addend.vmReturnCode;

 }
 return * this ;

 }

 bool errored() const {
 return vmReturnCode != 0 ;

 }
 };

 typedef struct {
 stats runtime;
 stats gasUsage;
 bool errored;

 } runtimeStats;

 runInfo time_run_vm (td::Slice command) {
 unsigned char buff[128];
 const int bits = (int)td::bitstring::parse_bitstring_hex_literal(buff, sizeof (buff),

 command.begin(), command.end());
 CHECK(bits >= 0);

 const auto cell = to_cell(buff, bits);

 vm::init_op_cp0();
 vm::DictionaryBase::get_empty_dictionary();

 class Logger : public td::LogInterface {
 public :
 void append(td::CSlice slice) override {
 res.append(slice.data(), slice.size());

 }
 std::string res;

 };
 static Logger logger;
 logger.res = "" ;
 td::set_log_fatal_error_callback([](td::CSlice message) {

 td::default_log_interface->append(logger.res); });
 vm::VmLog log{&logger, td::LogOptions::plain()};
 log.log_options.level = 4 ;
 log.log_options.fix_newlines = true ;
 log.log_mask |= vm::VmLog::DumpStack;

 vm::Stack stack;
 try {
 vm::GasLimits gas_limit(10000 , 10000);

 std:: clock_t cStart = std::clock();
 int ret = vm::run_vm_code(vm::load_cell_slice_ref(cell), stack, 0 /*flags*/ , nullptr

 /*data*/ ,
 std::move(log) /*VmLog*/ , nullptr , &gas_limit);

 std:: clock_t cEnd = std::clock();
 const auto time = (1000.0 * static_cast < long double >(cEnd - cStart) / CLOCKS_PER_SEC) -

 timingBaseline;

 Trail of Bits 159 TON Security Assessment
 CONFIDENTIAL

 return {time >= 0 ? time : 0 , gas_limit.gas_consumed(), ret};
 } catch (...) {
 LOG(FATAL) << "catch unhandled exception" ;
 return { -1 , -1 , 1 };

 }
 }

 runtimeStats averageRuntime (td::Slice command) {
 const size_t samples = 5000 ;
 runInfo total;
 std::vector<runInfo> values;
 values.reserve(samples);
 for (size_t i= 0 ; i<samples; ++i) {
 const auto value = time_run_vm(command);
 values.push_back(value);
 total += value;

 }
 const auto runtimeMean = total.runtime / static_cast < long double >(samples);
 const auto gasMean = static_cast < long double >(total.gasUsage) / static_cast < long

 double >(samples);
 long double runtimeDiffSum = 0.0 ;
 long double gasDiffSum = 0.0 ;
 bool errored = false ;
 for (const auto value : values) {
 const auto runtime = value.runtime - runtimeMean;
 const auto gasUsage = static_cast < long double >(value.gasUsage) - gasMean;
 runtimeDiffSum += runtime * runtime;
 gasDiffSum += gasUsage * gasUsage;
 errored = errored || value.errored();

 }
 return {

 {runtimeMean, sqrt(runtimeDiffSum / static_cast < long double >(samples))},
 {gasMean, sqrt(gasDiffSum / static_cast < long double >(samples))},
 errored

 };
 }

 runtimeStats timeInstruction (const std::string& setupCode, const std::string& toMeasure) {
 const auto setupCodeTime = averageRuntime(setupCode);
 const auto totalCodeTime = averageRuntime(setupCode + toMeasure);
 return {
 {totalCodeTime.runtime.mean - setupCodeTime.runtime.mean, totalCodeTime.runtime.stddev},
 {totalCodeTime.gasUsage.mean - setupCodeTime.gasUsage.mean, totalCodeTime.gasUsage.stddev}

 };
 }

 int main (int argc, char ** argv) {
 if (argc != 2 && argc != 3) {
 std::cerr << "Usage: " << argv[0] <<

 " [TVM_SETUP_BYTECODE_HEX] TVM_BYTECODE_HEX" << std::endl << std::endl;
 return 1 ;

 }
 std::cout << "OPCODE,runtime mean,runtime stddev,gas mean,gas stddev" << std::endl;
 timingBaseline = averageRuntime("").runtime.mean;
 std::string setup, code;
 if (argc == 2) {
 setup = "" ;
 code = argv[1];

 } else {
 setup = argv[1];

 Trail of Bits 160 TON Security Assessment
 CONFIDENTIAL

 code = argv[2];
 }
 const auto time = timeInstruction(setup, code);
 std::cout << code << "," << time.runtime.mean << "," << time.runtime.stddev << "," <<

 time.gasUsage.mean << "," << time.gasUsage.stddev << std::endl;
 return 0 ;

 }

 Figure H.1: Utility for timing opcodes

 Trail of Bits 161 TON Security Assessment
 CONFIDENTIAL

 I. Method ID Collisions

 TON requires each procedure in a contract to have a unique method ID. FunC uses a CRC16
 checksum to auto-generate these method IDs. Specifically, FunC uses

 (crc16(procedure name) & 0xffff) | 0x10000

 as the auto-generated method ID.

 Trail of Bits developed a script to automatically generate procedure names that collide
 with—i.e., produce the same method ID as—a given procedure. There is no single, standard
 CRC16 specification. The algorithm that TON uses is given in FIgure I.1.

 1 def crc16 (data):
 2 """CRC 16 implementation from TON
 3
 4

 https://github.com/ton-blockchain/ton/blob/d11580dfb3b81ea5d00775502737d59c155adfb2/
 tdutils/td/utils/crypto.cpp#L1177-L1205
 5
 6 """
 7 crc = 0
 8 for c in data:
 9 t = (c ^ (crc >> 8)) & 0xFF
 10 crc = crc16_table[t] ^ (crc << 8)
 11 return crc

 Figure I.1: Python implementation of FunC’s crc16 implementation

 We reproduce this implementation in Satisfiability Modulo Theories (SMT) , and then ask a
 SMT solver to enumerate all possible values of data from line 1 of Figure I.1 that would
 produce a crc value on line 11 that would collide with the given procedure name’s CRC16.
 This approach is capable of almost instantaneously yielding collisions for all inputs using
 the Z3 theorem prover .

 Our code for enumerating these collisions is given in Figure I.2.

 1 from typing import Iterable
 2
 3 import z3
 4
 5
 6 crc16_table = [
 7 0x0000 , 0x1021 , 0x2042 , 0x3063 , 0x4084 , 0x50a5 , 0x60c6 , 0x70e7 , 0x8108 ,

 0x9129 , 0xa14a , 0xb16b , 0xc18c , 0xd1ad ,
 8 0xe1ce , 0xf1ef , 0x1231 , 0x0210 , 0x3273 , 0x2252 , 0x52b5 , 0x4294 , 0x72f7 ,

 0x62d6 , 0x9339 , 0x8318 , 0xb37b , 0xa35a ,
 9 0xd3bd , 0xc39c , 0xf3ff , 0xe3de , 0x2462 , 0x3443 , 0x0420 , 0x1401 , 0x64e6 ,

 Trail of Bits 162 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/d11580dfb3b81ea5d00775502737d59c155adfb2/tdutils/td/utils/crypto.cpp#L1177-L1205
https://github.com/ton-blockchain/ton/blob/d11580dfb3b81ea5d00775502737d59c155adfb2/tdutils/td/utils/crypto.cpp#L1177-L1205
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://github.com/Z3Prover/z3

 0x74c7 , 0x44a4 , 0x5485 , 0xa56a , 0xb54b ,
 10 0x8528 , 0x9509 , 0xe5ee , 0xf5cf , 0xc5ac , 0xd58d , 0x3653 , 0x2672 , 0x1611 ,

 0x0630 , 0x76d7 , 0x66f6 , 0x5695 , 0x46b4 ,
 11 0xb75b , 0xa77a , 0x9719 , 0x8738 , 0xf7df , 0xe7fe , 0xd79d , 0xc7bc , 0x48c4 ,

 0x58e5 , 0x6886 , 0x78a7 , 0x0840 , 0x1861 ,
 12 0x2802 , 0x3823 , 0xc9cc , 0xd9ed , 0xe98e , 0xf9af , 0x8948 , 0x9969 , 0xa90a ,

 0xb92b , 0x5af5 , 0x4ad4 , 0x7ab7 , 0x6a96 ,
 13 0x1a71 , 0x0a50 , 0x3a33 , 0x2a12 , 0xdbfd , 0xcbdc , 0xfbbf , 0xeb9e , 0x9b79 ,

 0x8b58 , 0xbb3b , 0xab1a , 0x6ca6 , 0x7c87 ,
 14 0x4ce4 , 0x5cc5 , 0x2c22 , 0x3c03 , 0x0c60 , 0x1c41 , 0xedae , 0xfd8f , 0xcdec ,

 0xddcd , 0xad2a , 0xbd0b , 0x8d68 , 0x9d49 ,
 15 0x7e97 , 0x6eb6 , 0x5ed5 , 0x4ef4 , 0x3e13 , 0x2e32 , 0x1e51 , 0x0e70 , 0xff9f ,

 0xefbe , 0xdfdd , 0xcffc , 0xbf1b , 0xaf3a ,
 16 0x9f59 , 0x8f78 , 0x9188 , 0x81a9 , 0xb1ca , 0xa1eb , 0xd10c , 0xc12d , 0xf14e ,

 0xe16f , 0x1080 , 0x00a1 , 0x30c2 , 0x20e3 ,
 17 0x5004 , 0x4025 , 0x7046 , 0x6067 , 0x83b9 , 0x9398 , 0xa3fb , 0xb3da , 0xc33d ,

 0xd31c , 0xe37f , 0xf35e , 0x02b1 , 0x1290 ,
 18 0x22f3 , 0x32d2 , 0x4235 , 0x5214 , 0x6277 , 0x7256 , 0xb5ea , 0xa5cb , 0x95a8 ,

 0x8589 , 0xf56e , 0xe54f , 0xd52c , 0xc50d ,
 19 0x34e2 , 0x24c3 , 0x14a0 , 0x0481 , 0x7466 , 0x6447 , 0x5424 , 0x4405 , 0xa7db ,

 0xb7fa , 0x8799 , 0x97b8 , 0xe75f , 0xf77e ,
 20 0xc71d , 0xd73c , 0x26d3 , 0x36f2 , 0x0691 , 0x16b0 , 0x6657 , 0x7676 , 0x4615 ,

 0x5634 , 0xd94c , 0xc96d , 0xf90e , 0xe92f ,
 21 0x99c8 , 0x89e9 , 0xb98a , 0xa9ab , 0x5844 , 0x4865 , 0x7806 , 0x6827 , 0x18c0 ,

 0x08e1 , 0x3882 , 0x28a3 , 0xcb7d , 0xdb5c ,
 22 0xeb3f , 0xfb1e , 0x8bf9 , 0x9bd8 , 0xabbb , 0xbb9a , 0x4a75 , 0x5a54 , 0x6a37 ,

 0x7a16 , 0x0af1 , 0x1ad0 , 0x2ab3 , 0x3a92 ,
 23 0xfd2e , 0xed0f , 0xdd6c , 0xcd4d , 0xbdaa , 0xad8b , 0x9de8 , 0x8dc9 , 0x7c26 ,

 0x6c07 , 0x5c64 , 0x4c45 , 0x3ca2 , 0x2c83 ,
 24 0x1ce0 , 0x0cc1 , 0xef1f , 0xff3e , 0xcf5d , 0xdf7c , 0xaf9b , 0xbfba , 0x8fd9 ,

 0x9ff8 , 0x6e17 , 0x7e36 , 0x4e55 , 0x5e74 ,
 25 0x2e93 , 0x3eb2 , 0x0ed1 , 0x1ef0]
 26
 27
 28 def crc16_table_lookup (t):
 29 if isinstance (t, int):
 30 return crc16_table[t]
 31 ret = z3.BitVecVal(crc16_table[0], 32)
 32 for i, value in enumerate (crc16_table[1 :]):
 33 ret = z3.If(t == i + 1 , z3.BitVecVal(value, 32), ret)
 34 return ret
 35
 36
 37 def crc16 (data, start_crc= 0):
 38 """CRC 16 implementation from TON
 39
 40

 https://github.com/ton-blockchain/ton/blob/d11580dfb3b81ea5d00775502737d59c155adfb2/
 tdutils/td/utils/crypto.cpp#L1177-L1205
 41
 42 """
 43 crc = start_crc
 44 for c in data:

 Trail of Bits 163 TON Security Assessment
 CONFIDENTIAL

 45 t = (c ^ (crc >> 8)) & 0xFF
 46 crc = crc16_table_lookup(t) ^ (crc << 8)
 47 return crc
 48
 49
 50 def build_problem (solver, string_length: int , with_prefix: str = "" ,

 prev_hash = None , _char_vars = None):
 51 if _char_vars is None :
 52 _char_vars = []
 53 if prev_hash is None :
 54 prev_hash = z3.BitVec("init_hash" , 32)
 55 solver.add(prev_hash == 0)
 56 if string_length <= 0 :
 57 return prev_hash, _char_vars
 58 else :
 59 c = z3.BitVec("c" + str (string_length), 32)
 60
 61 if with_prefix:
 62 solver.add(c == ord (with_prefix[0]))
 63 else :
 64 # # The following two constraints allow function names with

 basically any ASCII characters:
 65 # solver.add(c >= 33)
 66 # solver.add(c <= 122)
 67
 68 # # The following constraint only permits function names with

 mixed case characters:
 69 # solver.add(z3.Or(
 70 # z3.And(c >= ord('A'), c <= ord('Z')),
 71 # z3.And(c >= ord('a'), c <= ord('z'))
 72 #))
 73
 74 # # The following two constraints only allow function names with

 lower-case characters:
 75 # solver.add(c >= ord('a'))
 76 # solver.add(c <= ord('z'))
 77
 78 # Lower-case, but also allow interior ̀_`
 79 if string_length > 1 and not _char_vars:
 80 solver.add(z3.Or(
 81 z3.And(c >= ord ('a'), c <= ord ('z')),
 82 c == ord ('_')
 83))
 84 else :
 85 solver.add(c >= ord ('a'))
 86 solver.add(c <= ord ('z'))
 87
 88 _char_vars.append(c)
 89 h = z3.BitVec("hash" + str (string_length), 32)
 90 next_crc = crc16((c,), start_crc=prev_hash)
 91 solver.add(h == next_crc)
 92 return build_problem(solver, string_length=string_length - 1 ,

 with_prefix=with_prefix[1 :], prev_hash=h,

 Trail of Bits 164 TON Security Assessment
 CONFIDENTIAL

 93 _char_vars=_char_vars)
 94
 95
 96 def solve (hash_to_collide: int , starting_length: int = 1 , enumerate_all:

 bool = True , with_prefix: str = ""):
 97 i = max (starting_length, len (with_prefix))
 98 yielded = False
 99 while enumerate_all or not yielded:
 100 print (f "Trying string length { i } ...")
 101
 102 solver = z3.Solver()
 103
 104 h, char_vars = build_problem(solver, i, with_prefix=with_prefix)
 105 solver.add((h & 0xffff) | 0x10000 == hash_to_collide)
 106
 107 while solver.check() == z3.sat:
 108 m = solver.model()
 109 yield bytes (m[c].as_long() for c in char_vars)
 110 yielded = True
 111 asmts = []
 112 for c in char_vars:
 113 asmts.append(c != m[c])
 114 solver.add(z3.Or(*asmts)) # prevent next model from using the
 same assignment as a previous model
 115
 116 i += 1
 117
 118
 119 def dict_collisions (to_match: Iterable[str] = (), with_prefix: str = ""):
 120 method_ids = dict ()
 121 to_match_ids = {
 122 fname: (crc16(fname.encode("utf-8")) & 0xffff) | 0x10000 for fname
 in to_match
 123 }
 124 with open ("/usr/share/dict/words" , "r") as f:
 125 for line in f:
 126 line = f " { with_prefix }{ line.strip() } "
 127 if len (line) < 3 :
 128 continue
 129 method_id = (crc16(line.encode("utf-8")) & 0xffff) | 0x10000
 130 if to_match_ids and method_id not in to_match_ids:
 131 continue
 132 elif method_id not in method_ids:
 133 method_ids[method_id] = {line}
 134 else :
 135 method_ids[method_id].add(line)
 136 for method_id, funcnames in method_ids.items():
 137 if not to_match_ids and len (funcnames) < 2 :
 138 continue
 139 print (f " { method_id } \t { ',' .join(funcnames) } ")
 140
 141
 142 if __name__ == "__main__" :

 Trail of Bits 165 TON Security Assessment
 CONFIDENTIAL

 143 import sys
 144
 145 if len (sys.argv) >= 3 and sys.argv[1] == "--with-prefix" :
 146 prefix = sys.argv[2]
 147 args = sys.argv[2 :]
 148 else :
 149 prefix = ""
 150 args = sys.argv
 151
 152 if len (args) >= 2 and args[1] == "--dict-collisions" :
 153 dict_collisions(args[2 :], with_prefix=prefix)
 154 exit(0)
 155 elif len (args) > 1 :
 156 funcnames = (f.encode("utf-8") for f in args[1 :])
 157 else :
 158 funcnames = (b "main" ,)
 159
 160 for to_collide in funcnames:
 161 crc = crc16(to_collide)
 162 method_id = (crc & 0xffff) | 0x10000
 163 print (f "Finding a hash collision for method_id =
 ((crc16({ to_collide !r}) = { crc }) & 0xffff) | 0x10000 "
 164 f "= { method_id } ")
 165 for collision in solve(method_id, with_prefix=prefix):
 166 if collision == to_collide:
 167 continue
 168 collision_crc = crc16(collision)
 169 collision_method_id = (collision_crc & 0xffff) | 0x10000
 170 assert method_id == collision_method_id
 171 print (f "Collision: { collision.decode('utf-8') !r}
 (crc16= { collision_crc } , method_id= { collision_method_id })")
 172 sys.stdout.flush()

 Figure I.2: Trail of Bits’s script to enumerate FunC method ID collisions

 Trail of Bits 166 TON Security Assessment
 CONFIDENTIAL

 J. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 From March 27 to March 31, 2023 , Trail of Bits reviewed the fixes and mitigations
 implemented by the TON team for the issues identified in this report. We reviewed each fix
 to determine its effectiveness in resolving the associated issue.

 TON’s fixes span a number of commits, branches, repositories, and forks. We list the
 associated location of each fix in the following Detailed Fix Review Results section. Note
 that not all of the fixes have yet to be merged into the TON master branch or deployed to
 the mainnet. There is only one latent high-severity finding that has yet to be resolved,
 TOB-TON-36 ; this is because at least one commercial product (a DEX) would break due to
 the fix. TON reports that it is working with the DEX to upgrade the contracts before
 deploying a network-wide fix.

 In summary, of the 54 issues described in this report, TON has resolved 37, has partially
 resolved 3, and has not resolved 11; additionally, Trail of Bits redacted three issues of
 previously undetermined severity. For additional information, please see the Detailed Fix
 Review Results below.

 ID Title Severity Status

 1 Proxied ADNL pong messages may have empty
 data

 Informational Resolved

 2 A block ID with no associated queue will cause a
 crash

 Informational Resolved

 3 Token manager only checks every other download
 for timeouts

 High Resolved

 4 FunC compiler will dereference an invalid pointer
 when output file is provided

 Low Resolved

 5 ListIterator postfix increment operator returns a
 local variable by reference

 Undetermined Resolved

 Trail of Bits 167 TON Security Assessment
 CONFIDENTIAL

 6 TVM programs can trigger undefined behavior in
 bigint.hpp

 High Resolved

 7 TVM programs can trigger undefined behavior in
 bitstring.cpp

 High Resolved

 8 TVM programs can trigger undefined behavior in
 tonops.cpp

 High Resolved

 9 TVM programs can trigger undefined behavior in
 CellBuilder.cpp

 High Resolved

 10 Multiple Fift stack instructions fail to check the
 stack depth

 Low Resolved

 11 PUSHPOW2 opcode uses twice as much CPU time
 as opcodes with a similar gas cost

 Low Unresolved

 12 Stack use-after-scope in tdutils test Informational Resolved

 13 On-chain pseudorandom number generation Informational Partially
 resolved

 14 The NOW opcode can cause consensus issues Undetermined Retracted

 15 VM state guards fail when not assigned to a
 variable

 Low Resolved

 16 Performance warning timers in the cell DB do not
 work

 Low Resolved

 17 DHT queries will crash if debug logging is enabled Low Resolved

 18 Frequent connection state changes can cause an
 ADNL node to exhaust memory

 Informational Resolved

 19 Missing base copy constructor invocation in
 derived copy constructor

 Informational Unresolved

 Trail of Bits 168 TON Security Assessment
 CONFIDENTIAL

 20 Unbounded storage of received Catchain blocks Informational Resolved

 21 Getting account state can crash when building a
 state root proof

 High Resolved

 22 Misaligned object allocation and interaction High Resolved

 23 Use of DowncastHelper leads to invalid downcast
 of incorrect type

 High Resolved

 24 Clock drift can break consensus Informational Resolved

 25 Shard records can be instantiated with
 uninitialized member variables

 Undetermined Resolved

 26 Signatures of block antecessors are not validated Undetermined Unresolved

 27 TLB reference validation can be bypassed Undetermined Resolved

 28 The TON client’s get shards request can fail Low Resolved

 29 Bigint and cell tests can silently fail due to
 undefined behavior

 Low Partially
 resolved

 30 Multiplication of a constant can lead to a
 misaligned stack

 High Resolved

 31 FunC codegen invokes undefined behavior Medium Resolved

 32 Constant operations on NaN can cause the FunC
 compiler to crash

 Low Resolved

 33 Undefined variables in FunC are treated as
 undefined functions and do not cause a compiler
 error

 Medium Unresolved

 Trail of Bits 169 TON Security Assessment
 CONFIDENTIAL

 34 Calls to implicitly impure functions without a
 return value are always optimized out without an
 error

 Medium Unresolved

 35 Calls to implicitly impure functions with unused
 return values are always optimized out without an
 error

 Informational Unresolved

 36 Comparison to NaN results in the other
 comparand

 High Unresolved

 37 FunC fails to reject out-of-range constants Low Resolved

 38 Inconsistent runtime behavior for operations
 resulting in NaN

 Medium Resolved

 39 Missing _Bit-marker for positive integer 1 Informational Resolved

 40 Method IDs can collide without warning Low Unresolved

 41 Single-line comments are honored within
 multi-line comments

 Low Resolved

 42 Bitwise operators can cause the FunC compiler to
 crash

 Low Resolved

 43 FunC compiler can produce undefined opcodes Low Resolved

 44 Invalid syntax can cause the FunC compiler to
 crash

 Low Resolved

 45 Dictionary lookup can return incorrect results High Partially
 Resolved

 46 Dictionary insertion can inconsistently crash High Resolved

 47 Bitwise negation of false is not always true High Resolved

 Trail of Bits 170 TON Security Assessment
 CONFIDENTIAL

 48 Setting the random number seed from the FunC
 standard library causes a stack misalignment

 Medium Resolved

 49 Querying a dictionary throws exception Low Unresolved

 50 Compile time integer literal operations can result
 in unexpected control flow

 Low Resolved

 51 Generating a random number throws an
 exception

 Undetermined Retracted

 52 Ethereum bridge signature verification will always
 pass for address zero

 Informational Unresolved

 53 Context sensitivity of the ; token can lead to
 confusion and bugs

 Informational Unresolved

 54 Sign-confusion can lead to votes being collected
 incorrectly

 Undetermined Retracted

 Trail of Bits 171 TON Security Assessment
 CONFIDENTIAL

 Detailed Fix Review Results
 TOB-TON-1: Proxied ADNL pong messages may have empty data
 Resolved in commit 34c1c548c45dd86ab1e180d8d154cbd6d7db42ea . The superfluous
 assignment to p.data was removed. Consider changing the name of the local variable
 data , as it shadows a function argument.

 TOB-TON-2: A block ID with no associated queue will cause a crash
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The function will
 now exit with an error if there is no associated queue.

 TOB-TON-3: Token manager only checks every other download for timeouts
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The iterator is
 now updated once for every iteration, either as a result of erasing a timed-out item or by
 advancing it to the next available item.

 TOB-TON-4: FunC compiler will dereference an invalid pointer when output file is
 provided
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The FunC
 compiler now uses static constants from std::fstream .

 TOB-TON-5: ListIterator postfix increment operator returns a local variable by
 reference
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The postfix
 increment operator now returns the local variable by value instead of by reference.

 TOB-TON-6: TVM programs can trigger undefined behavior in bigint.hpp reference
 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . Using the
 byte-code sequences described in the issue, we are no longer able to reach undefined
 behavior. The TON team has updated the affected operations: most of them now cast to
 unsigned types, and a few of them have been replaced with different operations.

 In our verification of this fix, we determined only that the operations can no longer reach
 the specific undefined behavior we reported. We did not verify that the results of the
 computations are correct. The fix for line 1925 performs an explicit cast to an unsigned
 long long integer type instead of using the trait-provided typedef uword_t , which could
 cause errors if these types are not in sync.

 TOB-TON-7: TVM programs can trigger undefined behavior in bitstring.cpp
 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . The TON team
 changed the affected operations to use unsigned types and implemented additional checks
 to prevent undefined behavior.

 TOB-TON-8: TVM programs can trigger undefined behavior in tonops.cpp

 Trail of Bits 172 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/commit/34c1c548c45dd86ab1e180d8d154cbd6d7db42ea
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1925
https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34

 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . The TON team
 changed the affected operations to cast to unsigned types, preventing signed integer
 overflow.

 TOB-TON-9: TVM programs can trigger undefined behavior in CellBuilder.cpp
 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . The TON team
 implemented an explicit check for the error case to prevent left-shifting by too many
 positions.

 TOB-TON-10: Multiple Fift stack instructions fail to check the stack depth
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The instructions
 now fail with a stack underflow check instead of crashing.

 TOB-TON-11: PUSHPOW2 opcode uses twice as much CPU time as opcodes with a
 similar gas cost
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . The TVM
 continues to use the same gas cost for all opcodes.

 The client provided the following context for this finding’s fix status:

 While indeed, PUSHPOW2 spends more time per gas than some other opcodes it lays
 within acceptable range. Some other opcodes which spends [sic] unproportionally more
 time pre gas unit were discovered, thanks to [the benchmark provided by Trail of Bits],
 and will be fixed during TVM update.

 TOB-TON-12: Stack use-after-scope in tdutils test
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The TON team
 re-ordered the local variables to prevent id from being accessed after destruction.

 TOB-TON-13: On-chain pseudorandom number generation
 Partially resolved. Although the TON team has documented the risks of the use of
 pseudorandom numbers, this warning comes only in the final section of the
 documentation. We recommend presenting that information upfront to ensure readers do
 not miss it. Additionally, the added documentation contains a broken link to a reference, in
 the sentence, “An evil validator with some probability can affect the seed…”.

 TOB-TON-14: <Retracted> The NOW opcode can cause consensus issues
 This issue was originally reported as a finding of undetermined severity, under the
 incorrect assumption that the NOW opcode had the potential to return different values
 across validators. During the fix review, we discovered that the time is retrieved from the
 block, which should be consistent across validators, so we have retracted this finding.
 However, since this value is manipulable by the block collator, we still recommend
 exercising caution in using it in contracts.

 Trail of Bits 173 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34
https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://docs.ton.org/develop/smart-contracts/guidelines/random-number-generation
https://docs.ton.org/participate/own-blockchain-software/random#conclusion

 TOB-TON-15: VM state guards fail when not assigned to a variable
 Resolved in the SpyCheese fork. The fork extends the lifetime of the Guard object by giving
 it an identifier. This commit has not yet been merged to the TON repository .

 TOB-TON-16: Performance warning timers in the cell DB do not work
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The
 PerfWarningTimer class was assigned an identifier, so it now correctly measures the
 execution time of subsequent operations in the function.

 TOB-TON-17: DHT queries will crash if debug logging is enabled
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The vulnerability
 is resolved; however, we recommend not relying on invoking virtual functions during object
 construction, as doing so is prone to error.

 TOB-TON-18: Frequent connection state changes can cause an ADNL node to exhaust
 memory
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The
 pending_messages_ vector is now explicitly clear, preventing memory from being
 exhausted.

 TOB-TON-19: Missing base copy constructor invocation in derived copy constructor
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . This
 informational-severity finding included a recommendation to make the codebase more
 robust against future changes. The client provided the following context for this finding’s fix
 status:

 We believe that since countable objects are unlikely to be changed, this issue can be
 neglected

 TOB-TON-20: Unbounded storage of received Catchain blocks
 Resolved. Although the TON team made no changes to the codebase to fix this issue, the
 vulnerability is documented and a solution exists, so we consider the issue resolved. We
 still recommend adding warnings issued to users when the parameter is set to zero..

 TOB-TON-21: Getting account state can crash when building a state root proof
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The comparison
 was changed to use CellHash instances with valid lifetimes.

 TOB-TON-22: Misaligned object allocation and interaction
 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . The alloc
 function now correctly accounts for alignment; however, invocations of alloc still use a
 hard-coded alignment that is not automatically derived from the type passed to it. Although
 the hard-coded value of 8 is likely sufficient for most architectures, we recommend
 implementing an alignment based on type.

 Trail of Bits 174 TON Security Assessment
 CONFIDENTIAL

https://github.com/SpyCheese/ton/commit/26b2e8ace9e3a970f08e516f03df53b90d66e910
https://github.com/ton-blockchain/ton/
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34

 TOB-TON-23: Use of DowncastHelper leads to invalid downcast of incorrect type
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The TON team has
 mitigated the risk of undefined behavior resulting from casting across type hierarchies by
 implementing and using downcast_construct to create objects of a specific type.

 TOB-TON-24: Clock drift can break consensus
 Resolved in commit 3e92ab9da849feda58c26bab1c25dacc1b7babe7 in the TON
 community repository. A sentence about the importance of correct time on the node server
 has been added to the documentation.

 TOB-TON-25: Shard records can be instantiated with uninitialized member
 variables
 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . All struct
 members are now initialized in the default constructor.

 TOB-TON-26: Signatures of block antecessors are not validated
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b .

 The client provided the following context for this finding’s fix status:

 It's ok, currently the list of signatures is not included in the block, because if it were, it
 would require an extra round of approval (all validators need the same set of signatures
 before moving on to the next block), and this would slow down the consensus.

 We have not observed any protections that would prevent a block from containing
 prev_blk_signatures . A malicious collator embedding invalid prev_blk_signatures
 could do so without being caught by the current validator code, resulting in an invalid block
 on-chain. If signature validation of block antecessors is enabled in the future, old blocks
 may not be validated and a fork may be created.

 TOB-TON-27: TLB reference validation can be bypassed
 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . A check was
 added to ensure that the ops argument is positive before it is decremented.

 TOB-TON-28: T he TON client’s get shards request can fail
 Resolved in commit 9c6787d2ff27dcb29fad562a9ca64ac650d66d34 . The
 commented-out return statements were restored.

 TOB-TON-29: Bigint and cell tests can silently fail due to undefined behavior
 Partially resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The TON
 team resolved all of the instances of integer overflowing negative bit shifts causing
 undefined behavior, except for one instance of signed integer overflow in
 test-cells.cpp , which still persists.

 TOB-TON-30: Multiplication of a constant can lead to a misaligned stack

 Trail of Bits 175 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-community/ton-docs/pull/159/commits/3e92ab9da849feda58c26bab1c25dacc1b7babe7
https://github.com/ton-community/
https://github.com/ton-community/
https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34
https://github.com/ton-blockchain/ton/commit/9c6787d2ff27dcb29fad562a9ca64ac650d66d34
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/blob/e37583e5e6e8cd0aebf5142ef7d8db282f10692b/crypto/test/test-cells.cpp#L502-L506
https://github.com/ton-blockchain/ton/blob/e37583e5e6e8cd0aebf5142ef7d8db282f10692b/crypto/test/test-cells.cpp#L502-L506

 Resolved as of commit 701fc6afad4484d6f8df3500ad85123c2de51b2e . The example
 FunC code now correctly compiles without producing a misaligned stack.

 TOB-TON-31: FunC codegen invokes undefined behavior
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The next pointer
 is now dereferenced only when not null .

 TOB-TON-32: Constant operations on NaN can cause the FunC compiler to crash
 Resolved as of commit 1662cb1bdcf8b7103ab909e373fbfeea5bd61cad , currently
 merged into the testnet branch . The compiler no longer crashes on constant operations
 involving NaNs.

 TOB-TON-33: Undefined variables in FunC are treated as undefined functions and do
 not cause a compiler error
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . The compiler
 continues to permit calls to undefined functions.

 The client provided the following context for this finding’s fix status:

 Sometimes FunC is used to generate templates that when [sic] will be used as pieces of
 larger smartcontracts, so [compiling FunC code with undefined function symbols] is ok.
 [The] Fift compilation step will cause an error for incomplete code.

 Given the knowledge that FunC is used to generate “templates” with potentially undefined
 function symbols (similar to C object files), we still recommend having it emit a compiler
 warning or error on undefined symbols as the default. Additionally, we recommend adding
 a command line option to func equivalent to the C compiler option ̀-c` to suppress the
 warnings/errors.

 TOB-TON-34: Calls to implicitly impure functions without a return value are always
 optimized out without an error
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . The compiler
 will not issue a warning when eliding implicitly impure functions without a return value.

 The client provided the following context for this finding’s fix status:

 It is documented behavior.

 TOB-TON-35: Calls to implicitly impure functions with unused return values are
 always optimized out without an error
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . The compiler
 will not issue a warning when eliding implicitly impure functions with unused return values.

 The client provided the following context for this finding’s fix status:

 Trail of Bits 176 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/commit/701fc6afad4484d6f8df3500ad85123c2de51b2e
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/pull/599/commits/1662cb1bdcf8b7103ab909e373fbfeea5bd61cad
https://github.com/ton-blockchain/ton/tree/testnet
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b

 It is documented behavior.

 TOB-TON-36: Comparison to NaN results in the other comparand
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b .

 The client provided the following context for this finding’s fix status:

 It is indeed quite a severe issue. Unfortunately, as our transactions analysis shows, on
 mainnet there is at least one commercial project (DEX) which relies on that behavior. In
 particular, if TVM will be fixed, some swaps will be thrown and funds lost. We are helping
 this DEX to migrate to correct behavior and will fix TVM after that.

 TOB-TON-37: FunC fails to reject out-of-range constants
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The compiler now
 emits an error on out-of-range integer constants.

 TOB-TON-38: Inconsistent runtime behavior for operations resulting in NaN
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . A compilation
 error is now thrown on division-by-zero errors.

 TOB-TON-39: Missing _Bit-marker for positive integer 1
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . TON chose to
 address the problem by removing the erroneous branch and its associated optimizations.

 TOB-TON-40: Method IDs can collide without warning
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . The compiler
 continues to have the ability to emit methods with duplicate IDs that would cause a
 runtime error when the contract is deployed.

 The client provided the following context for this finding’s fix status:

 For now, since Fift throws an error during fiftasm compilation, it is considered a minor
 issue. It is planned to be fixed in the future.

 TOB-TON-41: Single-line comments are honored within multi-line comments
 Resolved in commit 34669a4b70e50da253c1ce9974e1da47b71a59bb in the
 documentation repository . Single-line comments are still honored within multi-line
 comments, but this behavior is now documented.

 TOB-TON-42: Bitwise operators can cause the FunC compiler to crash
 Resolved in commit c6143715cc29ae23dad202b2580083099d8f61d2 . The compiler no
 longer crashes when bitwise operators are used on constants.

 TOB-TON-43: FunC compiler can produce undefined opcodes

 Trail of Bits 177 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-community/ton-docs/pull/159/commits/34669a4b70e50da253c1ce9974e1da47b71a59bb
https://github.com/ton-community/ton-docs
https://github.com/ton-community/ton-docs
https://github.com/ton-blockchain/ton/commit/c6143715cc29ae23dad202b2580083099d8f61d2

 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The compiler no
 longer emits the erroneous NEGPOW2 opcode.

 TOB-TON-44: Invalid syntax can cause the FunC compiler to crash
 Resolved in commit c6143715cc29ae23dad202b2580083099d8f61d2 . The compiler now
 emits an error on invalid syntax.

 TOB-TON-45: Dictionary lookup can return incorrect results
 Partially resolved in commit 1538e324ee5f3ad339c5a7b06debdeb19414aaaa in the
 documentation repository . The compiler continues to emit code that behaves unintuitively
 when different bit-lengths are used on the same dictionary with no warning, but this
 behavior is now documented.

 TOB-TON-46: Dictionary insertion can inconsistently crash
 Resolved in commit 1538e324ee5f3ad339c5a7b06debdeb19414aaaa in the
 documentation repository . The compiler continues to inconsistently emit code that will
 produce a runtime error when different bit-lengths are used on the same dictionary, but
 this behavior is now documented.

 TOB-TON-47: Bitwise negation of false is not always true
 Resolved in commit 91580e7ebf4bcd589581250ce509f51fdd58a66d . The FunC
 compiler no longer emits incorrect code for the bitwise negation operator.

 TOB-TON-48: Setting the random number seed from the FunC standard library causes
 a stack misalignment
 Resolved in commit 3d9a16558679ca48ef5616c3518a3c6fd72a0220 . The type signature
 of the set_seed function in the standard library was updated to match its associated
 opcode, preventing the stack misalignment.

 TOB-TON-49: Querying a dictionary throws exception
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b in TON and
 3171ec4442ac6d214f2993287630a4dbeb04f758 in the documentation repository . Our
 example FunC code still throws an exception when querying a dictionary for a missing key.

 The client provided the following context for this finding’s fix status:

 Behavior documented.

 However, the latest documentation for the udict_get function states the following:

 On success, [udict_get?] returns the value found as a slice along with a -1 flag
 indicating success. If fails, it returns (null, 0).

 This is not the behavior we observe in the latest version of TON; we still get the following
 exception:

 Trail of Bits 178 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/c6143715cc29ae23dad202b2580083099d8f61d2
https://github.com/ton-community/ton-docs/pull/159/commits/1538e324ee5f3ad339c5a7b06debdeb19414aaaa
https://github.com/ton-community/ton-docs
https://github.com/ton-community/ton-docs
https://github.com/ton-community/ton-docs/pull/159/commits/1538e324ee5f3ad339c5a7b06debdeb19414aaaa
https://github.com/ton-community/ton-docs
https://github.com/ton-community/ton-docs
https://github.com/ton-blockchain/ton/commit/91580e7ebf4bcd589581250ce509f51fdd58a66d
https://github.com/ton-blockchain/ton/commit/3d9a16558679ca48ef5616c3518a3c6fd72a0220
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-community/ton-docs/blob/3171ec4442ac6d214f2993287630a4dbeb04f758/docs/develop/func/stdlib.mdx#dict_get
https://github.com/ton-community/ton-docs
https://github.com/ton-community/ton-docs/blob/3171ec4442ac6d214f2993287630a4dbeb04f758/docs/develop/func/stdlib.mdx#dict_get

 exception code 10: invalid dictionary fork node

 TOB-TON-50: Compile time integer literal operations can result in unexpected control
 flow
 Resolved in commit 0578cb4a4285cf16e613129b85da21729fab7453 . The compiler no
 longer emits a NaN when literals are out of bounds; instead, it throws a compilation error.

 TOB-TON-51: <Retracted> Generating a random number throws an exception
 This issue was originally reported as a finding of undetermined severity. In our
 experiments, the RANDU256 opcode would throw an exception when run. During the fix
 review, we discovered that this was because we were not correctly initializing our block
 parameters, so we have retracted this finding. However, we would like to reiterate our
 recommendations for finding TOB-TON-13 to discourage the use of on-chain random
 number generation.

 TOB-TON-52: Ethereum bridge signature verification will always pass for address zero
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . All
 signatures from the zero address are still accepted. This behavior is not documented.

 The client provided the following context for this finding’s fix status:

 This will be addresses in token bridge (next gen, release planned end of March '23), in
 current ETH-TON and BSC-TON bridge won't be fixed as minor issue

 TOB-TON-53: Context sensitivity of the ; token can lead to confusion and bugs
 Unresolved as of commit e37583e5e6e8cd0aebf5142ef7d8db282f10692b . Whitespace
 between two ; tokens is still parsed without a warning.

 The client provided the following context for this finding’s fix status:

 We believe that visual difference between ; ; and ;; are big enough to not become a
 serious issue. Besides with support of TF a few plugins for FunC code highlighting are
 developed, which will mitigate this issue further by making difference between
 commented and not commented code even more noticeable

 TOB-TON-54: <Retracted> Sign-confusion can lead to votes being collected incorrectly
 This issue was originally reported as a finding of undetermined severity in which we
 speculated that sign confusion in the FunC votes-collector contract in the TON bridge
 could cause voting errors. During the fix review, we confirmed that the udict_get?
 function properly handles these sign-confusion edge cases, so we have retracted this
 finding.

 Trail of Bits 179 TON Security Assessment
 CONFIDENTIAL

https://github.com/ton-blockchain/ton/commit/0578cb4a4285cf16e613129b85da21729fab7453
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/ton/commit/e37583e5e6e8cd0aebf5142ef7d8db282f10692b
https://github.com/ton-blockchain/bridge-func/blob/master/func/votes-collector.fc

