
Prepared for
Dr. Elias
TON

Prepared by
William Bowling
UlrichMyhre
JunyiWang
Zellic

November 21, 2023

Tonlib
Smart Contract Security Assessment

Tonlib Smart Contract Security Assessment November 21, 2023

Contents About Zellic 4

1. Executive Summary 4

1.1. Goals of the Assessment 5

1.2. Non-goals and Limitations 5

1.3. Results 5

2. Introduction 6

2.1. About Tonlib 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Missing proof check for blocks.getShards 11

3.2. Missing proof check for Emulator transactions 13

3.3. The handler for blocks_lookupBlock does not check proof 15

3.4. Returned block header not checked 17

3.5. Blank block header returned on error 19

3.6. Directory traversal in KeyValueDir 21

3.7. Creating a raw query does not set the destinations 23

3.8. The smc_getLibraries handler lacks check for all libraries received 25

3.9. The buffer_to_hex utility function reverses nibbles 26

Zellic © 2023 ← Back to Contents Page 2 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

3.10. Hardcoded constants usedwithout a name 27

3.11. The query.forget handler does not forget the query 29

3.12. Missing check call in RemoteRunSmcMethod 30

4. Discussion 31

4.1. Uncompiled and unused files 32

4.2. Test coverage 32

5. ThreatModel 32

5.1. Messaging 33

5.2. Module: SimpleEncryption.cpp 33

5.3. Module: TonlibClient.cpp 34

5.4. Module: tonlib-cli.cpp 37

6. Assessment Results 37

6.1. Disclaimer 38

Zellic © 2023 ← Back to Contents Page 3 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

About Zellic Zellic was founded in 2020 by a team of blockchain specialists withmore than a decade of com-
bined industry experience. We are leading experts in smart contracts and Web3 development,
cryptography, web security, and reverse engineering. Before Zellic, we founded perfect blue ↗,
the top competitive hacking team in the world. Since then, our team has won countless cyber-
security contests and blockchain security events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual, unique con-
cerns and business needs. Our goal is to see the long-term success of our partners rather than
simply provide a list of present security issues. Similarly, we strive to adapt to our partners’ time-
linesand tobeasavailable aspossible. To keepupwithour latest endeavors and research, check
out ourwebsite zellic.io ↗ or follow@zellic_io ↗ on Twitter. If you are interested in partneringwith
Zellic, please contact us at hello@zellic.io ↗.

Zellic © 2023 ← Back to Contents Page 4 of 38

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Tonlib Smart Contract Security Assessment November 21, 2023

1. Executive Summary Zellic conducted a security assessment for TON from October 16th to November 17th, 2023.
During this engagement, Zellic reviewed Tonlib’s code for security vulnerabilities, design issues,
and general weaknesses in security posture.

1.1. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that wewish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Could amaliciousmessage froma lite server cause a stack overflowormemory leak?
• Is everymessage received from a lite server validated?
• Are the proofs received from a lite server checked correctly?

1.2. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Problems relating to the front-end components and infrastructure of the project
• Problems due to improper key custody or off-chain access control
• Issues stemming from code or infrastructure outside the assessment scope

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.3. Results

During our assessment on the scoped Tonlib classes, we discovered 12 findings. No critical
issues were found. One finding was of high impact, two were of medium impact, five were of
low impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes andobservations from the assessment for TON’s benefit in
the Discussion section (4. ↗) at the end of the document.

Zellic © 2023 ← Back to Contents Page 5 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 1

■ Medium 2

■ Low 5

■ Informational 4

During our assessment on the scoped Tonlib classes, we discovered 12 findings. No critical is-
sues were found. One finding was of high impact, two were of medium impact, five were of low
impact, and the remaining findings were informational in nature. TON acknowledged and ad-
dressedall identifiedfindings,with theexceptionof finding3.7. ↗, whichhasbeenacknowledged.

Zellic © 2023 ← Back to Contents Page 6 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

2. Introduction 2.1. About Tonlib

Tonlib is a key library for TON (TheOpenNetwork) network communications used by clients, lite
servers, validators, andmore.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing,
including both automated testing and manual review. These processes can vary significantly
per engagement, but themajority of the time is spent on a thoroughmanual review of the entire
scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily
on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by code
review. Depending on the engagement, we may also employ sophisticated analyzers
such as model checkers, theorem provers, fuzzers, and so on as necessary. We also
perform a cursory review of the code to familiarize ourselves with the classes.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomics or dangerous arbitrage opportunities. To the best of our abilities, time
permitting, we also review the contract logic to ensure that the code implements the
expected functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug
within the contract itself; rather, they are an unintended consequence of the contract’s
interaction with the broader DeFi ecosystem. Time permitting, we review external
interactions and summarize the associated risks: for example, flash loan attacks, oracle
pricemanipulation, MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality standards.
We also provide suggestions for possible optimizations, such as gas optimization,
upgradability weaknesses, centralization risks, and so on.

For eachfinding, Zellic assigns it an impact ratingbasedon its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue’s impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low,
and Informational.

Zellic © 2023 ← Back to Contents Page 7 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

Zellic organizes its reports such that the most important findings come first in the document,
rather than being strictly ordered on impact alone. Thus, we may sometimes emphasize an
“Informational” finding higher than a “Low” finding. The key distinction is that although certain
findings may have the same impact rating, their importance may differ. This varies based on
various soft factors, like our clients’ threat models, their business needs, and so on. We aim to
provide useful and actionable advice to our partners considering their long-term goals, rather
than a simple list of security issues at present.

Finally, Zellicprovidesa list ofmiscellaneousobservations thatdonothavesecurity impactorare
not directly related to the scoped classes itself. These observations — found in the Discussion
(4. ↗) sectionof thedocument—may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2023 ← Back to Contents Page 8 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

2.3. Scope

The engagement involved a review of the following targets:

Tonlib Classes

Repository https://github.com/ton-blockchain/ton ↗

Version ton: 469fb08c49f5f526c0cb65c939171bb0f7e5a53e

Program tonlib/*

Type CPP

Platform TON

2.4. Project Overview

Zellic was contracted to perform a security assessment with three consultants for a total of 11
person-weeks. The assessment was conducted over the course of four calendar weeks.

Zellic © 2023 ← Back to Contents Page 9 of 38

https://github.com/ton-blockchain/ton

Tonlib Smart Contract Security Assessment November 21, 2023

Contact Information

The following project manager was associ-
ated with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

William Bowling
Engineer
vakzz@zellic.io ↗

UlrichMyhre
Engineer
unblvr@zellic.io ↗

JunyiWang
Engineer
Junyi@zellic.io ↗

2.5. Project Timeline

October 16, 2023 Start of primary review period

October 18, 2023 Kick-off call

November 16, 2023 End of primary review period

Zellic © 2023 ← Back to Contents Page 10 of 38

mailto:chad@zellic.io
mailto:vakzz@zellic.io
mailto:unblvr@zellic.io
mailto:Junyi@zellic.io

Tonlib Smart Contract Security Assessment November 21, 2023

3. Detailed Findings 3.1. Missing proof check for blocks.getShards

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity High

Likelihood High Impact High

Description

When requesting block shards using the blocks.getShards request, the lite server returns a
proof_ as well as data_ containing the shard configuration:

td::Status TonlibClient::do_request(const tonlib_api::blocks_getShards&
request,

td::Promise<object_ptr<tonlib_api::blocks_shards>>&& promise)
{

TRY_RESULT(block, to_lite_api(*request.id_))
client_.send_query(
ton::lite_api::liteServer_getAllShardsInfo(std::move(block)),

promise.wrap([](lite_api_ptr<ton::lite_api::liteServer_allShardsInfo>&&
all_shards_info)

-> td::Result<object_ptr<tonlib_api::blocks_shards>> {
td::BufferSlice proof = std::move((*all_shards_info).proof_);
td::BufferSlice data = std::move((*all_shards_info).data_);
if (data.empty()) {

return td::Status::Error(”shard configuration is empty”);
} else {

auto R = vm::std_boc_deserialize(data.clone());
if (R.is_error()) {
return R.move_as_error_prefix(”cannot deserialize shard configuration:

”);
}
auto root = R.move_as_ok();
block::ShardConfig sh_conf;
if (!sh_conf.unpack(vm::load_cell_slice_ref(root))) {
return td::Status::Error(”cannot extract shard block list from shard

configuration”);
} else {
auto ids = sh_conf.get_shard_hash_ids(true);
tonlib_api::blocks_shards shards;

Zellic © 2023 ← Back to Contents Page 11 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

for (auto id : ids) {
auto ref = sh_conf.get_shard_hash(ton::ShardIdFull(id));
if (ref.not_null()) {
shards.shards_.push_back(to_tonlib_api(ref->top_block_id()));
}

}
return

tonlib_api::make_object<tonlib_api::blocks_shards>(std::move(shards));
}

}
}));

return td::Status::OK();
}

The issue is that the td::BufferSlice proof variable is never used to check that theproof is valid
and the data is correct.

Impact

A lite server can return an empty proof_ andwhatever shard information theywish in data_; the
returned data does not have tomatch the block requested by the client.

Recommendations

The proof should be checked to ensure that it is the value for the data returned and that it
matches the block requested by the client.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit 6cd9bfdc
↗.

Zellic © 2023 ← Back to Contents Page 12 of 38

https://github.com/ton-blockchain/ton/commit/6cd9bfdc01cd369b62c27e059de470ab03ed879e
https://github.com/ton-blockchain/ton/commit/6cd9bfdc01cd369b62c27e059de470ab03ed879e

Tonlib Smart Contract Security Assessment November 21, 2023

3.2. Missing proof check for Emulator transactions

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

The RunEmulator class has a method for fetching the transactions that will later be run by the
emulator:

td::Status get_transactions(std::int64_t lt) {
TRY_RESULT(lite_block, to_lite_api(*to_tonlib_api(block_id_.id)));
auto after
= ton::lite_api::make_object<ton::lite_api::liteServer_transactionId3>(
request_.address.addr, lt);

auto query =
ton::lite_api::liteServer_listBlockTransactions(std::move(lite_block),
0b10100111, 256, std::move(after), false, false);

client_.send_query(std::move(query), [self =
this](lite_api_ptr<ton::lite_api::liteServer_blockTransactions>&&
bTxes)
{
if (!bTxes) {
self->check(td::Status::Error(”liteServer.blockTransactions is

null”));
return;

}

std::int64_t last_lt = 0;
for (auto& id : bTxes->ids_) {
last_lt = id->lt_;
if (id->account_ != self->request_.address.addr) {

continue;
}

if (id->lt_ == self->request_.lt && id->hash_ == self->request_.hash)
{

self->incomplete_ = false;
}

Zellic © 2023 ← Back to Contents Page 13 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

self->transactions_.push_back({});
self->get_transaction(id->lt_, id->hash_, [self,

i = self->transactions_.size() - 1](auto transaction) {
self->set_transaction(i, std::move(transaction)); });

if (!self->incomplete_) {
return;

}
}

if (bTxes->incomplete_) {
self->check(self->get_transactions(last_lt));

}
});
return td::Status::OK();

}

The issue is that the proof for the returned liteServer_blockTransactions object is never
checked, allowing amalicious lite server to return any transactions they wish.

Impact

Amalicious lite server could return invalid transactions, causing the result of the emulator to be
incorrect.

Recommendations

Theproof for the returned liteServer_blockTransactionsobject should be checked to ensure
that it is valid andmatches the expected block ID.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit 23f8e448
↗.

Zellic © 2023 ← Back to Contents Page 14 of 38

https://github.com/ton-blockchain/ton/commit/23f8e448f13b681fdea84b745a4ce48ac0c31226
https://github.com/ton-blockchain/ton/commit/23f8e448f13b681fdea84b745a4ce48ac0c31226

Tonlib Smart Contract Security Assessment November 21, 2023

3.3. The handler for blocks_lookupBlock does not check proof

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Medium

Likelihood Low Impact Medium

Description

The function below, handling the blocks_lookupBlock request, does not check the proof of the
returned block header.

td::Status TonlibClient::do_request(const tonlib_api::blocks_lookupBlock&
request,

td::Promise<object_ptr<tonlib_api::ton_blockIdExt>>&& promise)
{

client_.send_query(ton::lite_api::liteServer_lookupBlock(
request.mode_,

ton::lite_api::make_object<ton::lite_api::tonNode_blockId>(
(*request.id_).workchain_, (*request.id_).shard_,

(*request.id_).seqno_),
(td::uint64)(request.lt_),
(td::uint32)(request.utime_)),

promise.wrap([](lite_api_ptr<ton::lite_api::liteServer_blockHeader>&&
header)
{

const auto& id = header->id_;
return to_tonlib_api(*id);

//tonlib_api::make_object<tonlib_api::ton_blockIdExt>(
// ton::tonlib_api::ton_blockIdExt(id->workchain_,

id->)
//);

}));
return td::Status::OK();

}

Zellic © 2023 ← Back to Contents Page 15 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

Impact

This allows the lite server to forge block headers and return them.

Recommendations

Check the header proof and reject the data if the proof is incorrect.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit 9fea6235
↗.

Zellic © 2023 ← Back to Contents Page 16 of 38

https://github.com/ton-blockchain/ton/commit/9fea62356e4f231ff786e92f223c88f22644c9b3
https://github.com/ton-blockchain/ton/commit/9fea62356e4f231ff786e92f223c88f22644c9b3

Tonlib Smart Contract Security Assessment November 21, 2023

3.4. Returned block header not checked

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When requesting a block header using the blocks.getBlockHeader request, the lite server re-
turns a header_proof_, which is used to generate the block header:

td::Status TonlibClient::do_request(const
tonlib_api::blocks_getBlockHeader& request,

td::Promise<object_ptr<tonlib_api::blocks_header>>&& promise)
{

TRY_RESULT(block, to_lite_api(*request.id_))
client_.send_query(ton::lite_api::liteServer_getBlockHeader(
std::move(block),
0xffff),
promise.wrap([](lite_api_ptr<ton::lite_api::liteServer_blockHeader>&&
hdr)
{
auto blk_id = ton::create_block_id(hdr->id_);
auto R = vm::std_boc_deserialize(std::move(hdr->header_proof_));
tonlib_api::blocks_header header;
if (R.is_error()) {

LOG(WARNING) << ”R.is_error() ”;
} else {

auto root = R.move_as_ok();
try {
ton::RootHash vhash{root->get_hash().bits()};
auto virt_root = vm::MerkleProof::virtualize(root, 1);
if (virt_root.is_null()) {

LOG(WARNING) << ”virt root is null”;
} else {

std::vector<ton::BlockIdExt> prev;
ton::BlockIdExt mc_blkid;
bool after_split;
auto res = block::unpack_block_prev_blk_ext(virt_root, blk_id,

prev, mc_blkid, after_split);

Zellic © 2023 ← Back to Contents Page 17 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

if (res.is_error()) {
LOG(WARNING) << ”res.is_error() ”;
} else {
block::gen::Block::Record blk;
block::gen::BlockInfo::Record info;
if (!(tlb::unpack_cell(virt_root, blk)

&& tlb::unpack_cell(blk.info, info))) {
LOG(WARNING) << ”unpack failed”;

} else {
header.id_ = to_tonlib_api(blk_id);
header.global_id_ = blk.global_id;
header.version_ = info.version;
header.flags_ = info.flags;

// [...]

The issue is that the vhash of the returned proof is created but never checked to ensure that it
matches the requested block root hash.

Impact

A lite server can return any block header theywish so long as they generate a valid proof for it; it
does not have tomatch the block requested by the client.

Recommendations

Thevhashof the returnedproof shouldbechecked toensure that itmatches the requestedblock
root hash, similar to other places in the codebase:

ton::RootHash vhash{virt_root->get_hash().bits()};
if (ton::RootHash{virt_root->get_hash().bits()} != block.root_hash_) {

return td::Status::Error(”block header has incorrect root hash”);
}

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit fabeeb07
↗.

Zellic © 2023 ← Back to Contents Page 18 of 38

https://github.com/ton-blockchain/ton/commit/fabeeb07588e8c76eb59a9f559e472b8be63ec1d
https://github.com/ton-blockchain/ton/commit/fabeeb07588e8c76eb59a9f559e472b8be63ec1d

Tonlib Smart Contract Security Assessment November 21, 2023

3.5. Blank block header returned on error

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When requesting a block header using the blocks.getBlockHeader request, if there are any er-
rors decoding the response from the lite server, an uninitialized header object is still returned
instead of an error:

td::Status TonlibClient::do_request(const
tonlib_api::blocks_getBlockHeader& request,

td::Promise<object_ptr<tonlib_api::blocks_header>>&& promise)
{

TRY_RESULT(block, to_lite_api(*request.id_))
client_.send_query(ton::lite_api::liteServer_getBlockHeader(
std::move(block),
0xffff),
promise.wrap([](lite_api_ptr<ton::lite_api::liteServer_blockHeader>&&
hdr)
{
auto blk_id = ton::create_block_id(hdr->id_);
auto R = vm::std_boc_deserialize(std::move(hdr->header_proof_));
tonlib_api::blocks_header header;
if (R.is_error()) {

LOG(WARNING) << ”R.is_error() ”;
} else {

auto root = R.move_as_ok();
try {
// [...]
} catch (vm::VmError& err) {
auto E = err.as_status(PSLICE() << ”error processing header for

” << blk_id.to_str() << ” :”);
LOG(ERROR) << std::move(E);
} catch (vm::VmVirtError& err) {
auto E = err.as_status(PSLICE() << ”error processing header for

” << blk_id.to_str() << ” :”);
LOG(ERROR) << std::move(E);

Zellic © 2023 ← Back to Contents Page 19 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

} catch (...) {
LOG(WARNING) << ”exception catched ”;
}

}
return
tonlib_api::make_object<tonlib_api::blocks_header>(std::move(header));
}));

return td::Status::OK();
}

Impact

A client requesting a block header could receive a blank header object instead and not be aware
that there was an error processing the response from the lite server.

Recommendations

If there is an error processing the response from the lite server, an appropriate
td::Status::Error should be returned instead of an uninitialized header object.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit 28051ce1
↗.

Zellic © 2023 ← Back to Contents Page 20 of 38

https://github.com/ton-blockchain/ton/commit/28051ce16f63bec2fc80a858f6020f148eed5ca7
https://github.com/ton-blockchain/ton/commit/28051ce16f63bec2fc80a858f6020f148eed5ca7

Tonlib Smart Contract Security Assessment November 21, 2023

3.6. Directory traversal in KeyValueDir

Target tonlib/KeyValue.cpp

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

TheKeyValueDirclass implementsakey-valuestorebackedbyadirectoryondisk. Whenadding
or setting a value, the key is used as the file name and the path generated using the to_file_path
helper:

td::Status add(td::Slice key, td::Slice value) override {
auto path = to_file_path(key.str());
if (td::stat(path).is_ok()) {
return td::Status::Error(PSLICE() << ”File ” << path << ”already

exists”);
}
return td::atomic_write_file(path, value);

}

td::Status set(td::Slice key, td::Slice value) override {
return td::atomic_write_file(to_file_path(key.str()), value);

}

// [...]

private:
std::string directory_;

std::string to_file_path(std::string key) {
return directory_ + TD_DIR_SLASH + key;

}

The issue is that the keymay contain ../, causing the file to be written outside the intended di-
rectory.

Zellic © 2023 ← Back to Contents Page 21 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

Impact

If the key is ever controllable by amalicious actor, it could be used towrite files to arbitrary loca-
tions on the file system.

Currently, all calls to set or add that have controllable keys are part of the configuration provided
by the client using TonLib and not influenced by a remote actor.

Recommendations

The final path should be checked to ensure that it is within the intended directory.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit 4df4fa20
↗.

Zellic © 2023 ← Back to Contents Page 22 of 38

https://github.com/ton-blockchain/ton/commit/4df4fa20f34dd52da910ec290d3571f41999e4f6
https://github.com/ton-blockchain/ton/commit/4df4fa20f34dd52da910ec290d3571f41999e4f6

Tonlib Smart Contract Security Assessment November 21, 2023

3.7. Creating a raw query does not set the destinations

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Low

Likelihood N/A Impact Low

Description

The raw.createQuery handler creates and registers a new raw query based on the request:

td::Status TonlibClient::do_request(const tonlib_api::raw_createQuery&
request,

td::Promise<object_ptr<tonlib_api::query_info>>&& promise)
{

if (!request.destination_) {
return TonlibError::EmptyField(”destination”);

}
TRY_RESULT(account_address,
get_account_address(request.destination_->account_address_));

td::optional<ton::SmartContract::State> smc_state;
if (!request.init_code_.empty()) {
TRY_RESULT_PREFIX(code, vm::std_boc_deserialize(request.init_code_),
TonlibError::InvalidBagOfCells(”init_code”));
TRY_RESULT_PREFIX(data, vm::std_boc_deserialize(request.init_data_),
TonlibError::InvalidBagOfCells(”init_data”));
smc_state = ton::SmartContract::State{std::move(code),
std::move(data)};

}
TRY_RESULT_PREFIX(body, vm::std_boc_deserialize(request.body_),
TonlibError::InvalidBagOfCells(”body”));

td::Promise<td::unique_ptr<Query>> new_promise =
promise.send_closure(actor_id(this),

&TonlibClient::finish_create_query);

make_request(int_api::GetAccountState{account_address,
query_context_.block_id.copy(), {}},
new_promise.wrap([smc_state = std::move(smc_state),
body = std::move(body)](auto&& source) mutable {

Zellic © 2023 ← Back to Contents Page 23 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

Query::Raw raw;
if (smc_state) {

source->set_new_state(smc_state.unwrap());
}
raw.new_state = source->get_new_state();
raw.message_body = std::move(body);
raw.message =

ton::GenericAccount::create_ext_message(source->get_address(),
raw.new_state, raw.message_body);

raw.source = std::move(source);
return td::make_unique<Query>(std::move(raw));

}));
return td::Status::OK();

}

This issue is that the destinations field of the rawquery is never set, even though the destina-
tion is part of the request. The destinations of the rawquery are usedwhen estimating the fee
for the query, so if the destinations are not set, then the fee will be incorrect.

Impact

If a client used raw.createQuery and then tries to get an estimate of the fee for it using
query.estimateFees, the returned estimate will not include any destination_fees.

Recommendations

Set thedestinationsfieldof the rawquerywhencreating it to thedestination fromtherequest.

Remediation

This issue has been acknowledged by TON.

Currently raw.createQuery+query.estimateFees calculates fee of external message only
on source account (which is destination field of request). It is not supposed to emulate
transaction on destination account.

Zellic © 2023 ← Back to Contents Page 24 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

3.8. The smc_getLibraries handler lacks check for all libraries received

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Low

Likelihood N/A Impact Low

Description

In the following function, there is no check that all the requested libraries are received. The lite
server can return an incomplete list, and the request would complete successfully.

td::Status TonlibClient::do_request(const tonlib_api::smc_getLibraries&
request,

td::Promise<object_ptr<tonlib_api::smc_libraryResult>>&& promise)
{

Impact

Potentially, there can be unintuitive error messages. However, as no code uses this method at
thismoment, itdoesnothaveany impact. If thismethod isused, then itmayresult inanunintuitive
error messagewhen the requested library is used but missing.

Recommendations

Fail or succeed this request depending onwhether all requested libraries are returned.

Remediation

This issue has been acknowledged by TON, and fixes were implemented in the following com-
mits:

• 1d955971 ↗
• 7a228d65 ↗

Zellic © 2023 ← Back to Contents Page 25 of 38

https://github.com/ton-blockchain/ton/commit/1d955971deb74ec57b8023ee29d495f5023b0efc
https://github.com/ton-blockchain/ton/commit/7a228d65cf67647368d980cea4474eeb6efa3c6f

Tonlib Smart Contract Security Assessment November 21, 2023

3.9. The buffer_to_hex utility function reverses nibbles

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The buffer_to_hex function in tdutils/td/utils/misc.cpp reverses the nibbles of the byte buffer
passed in.

string buffer_to_hex(Slice buffer) {
const char *hex = ”0123456789ABCDEF”;
string res(2 * buffer.size(), '\0');
for (std::size_t i = 0; i < buffer.size(); i++) {
auto c = buffer.ubegin()[i];
res[2 * i] = hex[c & 15];
res[2 * i + 1] = hex[c >> 4];

}
return res;

}

Impact

Exporting keys from the CLI will request the password for a public key but print the public key
scrambled in the manner described above. There are also a number of log messages using the
incorrect print.

Recommendations

Fix the above function by reversing the order of the nibbles.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit b37a7613
↗.

Zellic © 2023 ← Back to Contents Page 26 of 38

https://github.com/ton-blockchain/ton/commit/b37a761363c66d861439c8b43c1bed144acdc7fe
https://github.com/ton-blockchain/ton/commit/b37a761363c66d861439c8b43c1bed144acdc7fe

Tonlib Smart Contract Security Assessment November 21, 2023

3.10. Hardcoded constants usedwithout a name

Target tonlib/TontlibClient.cpp

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

In the following code, around line 2876, the type ID is directly hardcoded.

if (type == 0 || type == 0x2167da4b) {
td::Status status;

In the following code, around line 5288, themode bit flags are hardcoded.

bool check_proof = request.mode_ & 32;
bool reverse_mode = request.mode_ & 64;
bool has_starting_tx = request.mode_ & 128;

if (mode & 4 && !tvalue->get_hash().bits().equals(bTxes->ids_[count]-
>hash_.bits(), 256))
{
return td::Status::Error(”Couldn't verify proof (hash)”);

}
if (mode & 2 && cur_trans != td::BitArray<64>(bTxes->ids_[count]->lt_)) {

return td::Status::Error(”Couldn't verify proof (lt)”);
}
if (mode & 1 && cur_addr != bTxes->ids_[count]->account_) {

return td::Status::Error(”Couldn't verify proof (account)”);
}

Impact

The constants could be considered unintuitive to developers unfamiliar with the code.

Zellic © 2023 ← Back to Contents Page 27 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

Recommendations

Use enumerations or name constants instead.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit b65b3294
↗.

Zellic © 2023 ← Back to Contents Page 28 of 38

https://github.com/ton-blockchain/ton/commit/b65b3294da610671e6f970302848800121b773ce
https://github.com/ton-blockchain/ton/commit/b65b3294da610671e6f970302848800121b773ce

Tonlib Smart Contract Security Assessment November 21, 2023

3.11. The query.forget handler does not forget the query

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The query.forget request handler in TonlibClient checks to ensure that the requested query
exists, but it does not remove it from themap:

td::Status TonlibClient::do_request(tonlib_api::query_forget& request,

td::Promise<object_ptr<tonlib_api::ok>>&& promise)
{

auto it = queries_.find(request.id_);
if (it == queries_.end()) {
return TonlibError::InvalidQueryId();

}
promise.set_value(tonlib_api::make_object<tonlib_api::ok>());
return td::Status::OK();

}

Instead, it leaves the query in themap and returns an OK response.

Impact

Long-running clients may wish to remove queries after they have been completed to reduce
memory usage, but even after calling query.forget, the query will remain in themap.

Recommendations

Remove the query from themap if query.forget is called.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit 48eb64ad
↗.

Zellic © 2023 ← Back to Contents Page 29 of 38

https://github.com/ton-blockchain/ton/commit/48eb64ad90d45d0c3062be56c16f3c5ebe8115e2
https://github.com/ton-blockchain/ton/commit/48eb64ad90d45d0c3062be56c16f3c5ebe8115e2

Tonlib Smart Contract Security Assessment November 21, 2023

3.12. Missing check call in RemoteRunSmcMethod

Target tonlib/TonlibClient.cpp

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

When RemoteRunSmcMethod is usedwithout a specific block, the latest block is fetched andused:

void with_last_block(td::Result<LastBlockState> r_last_block) {
check(do_with_last_block(std::move(r_last_block)));

}

td::Status with_block_id() {
TRY_RESULT(method_id, query_.args.get_method_id());
TRY_RESULT(serialized_stack, query_.args.get_serialized_stack());
client_.send_query(

//liteServer.runSmcMethod mode:# id:tonNode.blockIdExt
account:liteServer.accountId method_id:long params:bytes =
liteServer.RunMethodResult;

ton::lite_api::liteServer_runSmcMethod(
0x1f, ton::create_tl_lite_block_id(query_.block_id.value()),
ton::create_tl_object<ton::lite_api::liteServer_accountId>(
query_.address.workchain, query_.address.addr),

method_id, std::move(serialized_stack)),
[self = this](auto r_state) {

self->with_run_method_result(std::move(r_state)); },
query_.block_id.value().id.seqno);

return td::Status::OK();
}

td::Status do_with_last_block(td::Result<LastBlockState> r_last_block) {
TRY_RESULT(last_block, std::move(r_last_block));
query_.block_id = std::move(last_block.last_block_id);
with_block_id();
return td::Status::OK();

}

void start_up() override {
if (query_.block_id) {

Zellic © 2023 ← Back to Contents Page 30 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

check(with_block_id());
} else {
client_.with_last_block(

[self = this](td::Result<LastBlockState> r_last_block) {
self->with_last_block(std::move(r_last_block)); });

}
}

The issue is that the call to with_block_id from do_with_last_block is missing a surrounding
check(). If with_block_id returns an error (for example, if no method ID is supplied), then the
error will be ignored and not progress any further as the promise will never be fulfilled or stop
will never be called.

Impact

If RemoteRunSmcMethod is used without a specific block and an error occurs in with_block_id,
the clientwill not receive theappropriateerror andwill have towait for theactor to time-outwith-
out knowingwhy.

Recommendations

The call to with_block_id should bewrapped in a check to automatically propagate any errors.

Remediation

This issue has been acknowledged by TON, and a fix was implemented in commit 09dae07f
↗.

Zellic © 2023 ← Back to Contents Page 31 of 38

https://github.com/ton-blockchain/ton/commit/09dae07f258d3bea366d43d487d22e82a74897b8
https://github.com/ton-blockchain/ton/commit/09dae07f258d3bea366d43d487d22e82a74897b8

Tonlib Smart Contract Security Assessment November 21, 2023

4. Discussion Thepurpose of this section is to documentmiscellaneous observations thatwemadeduring the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

4.1. Uncompiled and unused files

The following files are not included in the CMake build and are never compiled or used:

• ./tonlib/CellString.cpp
• ./tonlib/CellString.h
• ./tonlib/ClientActor.cpp
• ./tonlib/ClientActor.h
• ./tonlib/GenericAccount.cpp
• ./tonlib/GenericAccount.h
• ./tonlib/TestGiver.cpp
• ./tonlib/TestGiver.h
• ./tonlib/TestWallet.cpp
• ./tonlib/TestWallet.h
• ./tonlib/Wallet.cpp
• ./tonlib/Wallet.h

If they are intended to be used, they should be added to the CMake build so that they are built
and tested; otherwise, they should be removed.

This issue has been acknowledged by TON, and a fix was implemented in commit 9e56af60
↗.

4.2. Test coverage

In our assessment of the test suite, weobserved thatwhile it provides adequate coverage for the
files under tonlib/keys, the remaining paths appear to be undertested or not covered at all.

For example, the TonlibClient is a critical component of the system used as a gateway between
the client SDKs and the lite servers. While there are unit tests to check some basic requests
and operations, themajority of the classes and requests have no test coverage. It is essential to
include tests for these to ensure the functions behave predictably under all conditions.

In our assessment,we found that enhancing test coverage for these specific areaswould further
bolster the reliability and resilience of the project. We recommend expanding the test suite to
include test cases addressing the above points.

Zellic © 2023 ← Back to Contents Page 32 of 38

https://github.com/ton-blockchain/ton/commit/9e56af604f8df00c4eca4370dc04ac308d7f5b0a
https://github.com/ton-blockchain/ton/commit/9e56af604f8df00c4eca4370dc04ac308d7f5b0a

Tonlib Smart Contract Security Assessment November 21, 2023

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we ana-
lyzed each function in the classes and created awritten threatmodel for some critical functions.
A threat model documents a given function’s externally controllable inputs and how an attacker
could leverage each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in
this section does not necessarily suggest that a function is safe.

5.1. Messaging

Themessaging structure is defined in the documentation ↗, and the encryption algorithm is im-
plemented exactly as the documentation states.

The TON blockchain puts no actual restrictions on the message body of internal messages, but
it is recommended to follow something similar to the reference implementation. One important
rationale for this is that some messages can expect a response, and the contracts will need to
understandwhat is being responded to.

Internal messages are have an op field, which either identifies themethod to invoke in the smart
contract or oneof the reserved identifiers. The opfield should have thehighest bit (MSBout of 32
bits) set to 1 if it is a response or 0 otherwise. After op, there is query_id, which is used tomatch
queries and responses. This field can be omitted if there is no expectations of a response.

Setting op to the number 0means “simple transfermessagewith comment” and is unencrypted.
Thesemessages can still be binary data, but then it is required to start with 0xff as the first byte.
Very longmessages can be split into multiple, chained cells where the root cell has 123 bytes of
themessage and every subsequent cell has up to 127 additional bytes.

When op is 0x2167da4b, it refers to “transfer message with encrypted comment”. These mes-
sages can be chainedwithinmultiple cells, where the first cell can contain up to 35 bytes and the
rest 127 bytes. There is an upper limit on 16 such chained cells and a string length of 1,024. Each
cell, except for the last one, has a reference to the next cell.

There is also two reserved op responses, 0xfffffffe and 0xffffffff. A response with op = 0xffffffff
signals the error “operation not supported”, which is the response a smart contract would send
if a function call does not exist. The 0xfffffffe should be translated to “operation not allowed”.
Unknown responses are to be ignored to avoid creating amessaging loop.

5.2. Module: SimpleEncryption.cpp

The module SimpleEncryption implements utility functions for encrypting and decrypting data
and is optionally used when smart contracts interact through so-called internal messages.
The encryption algorithm is defined in the documentation ↗, and the current implementation is
mostly the same as the documentation states.

The base cryptographic primitives used in SimpleEncryption rely on libraries like Ed25519.cpp
and crypto.cpp for the heavy lifting. These are out of scope for the audit and assumed safe. Most

Zellic © 2023 ← Back to Contents Page 33 of 38

https://docs.ton.org/develop/smart-contracts/guidelines/internal-messages
https://docs.ton.org/develop/smart-contracts/guidelines/internal-messages#messages-with-encrypted-comments

Tonlib Smart Contract Security Assessment November 21, 2023

of them aremainly thin wrappers aroundOpenSSL primitives.

The currently documented and implemented algorithm is as follows:

1. A shared secret is calculated using the sender’s private key and the receiver’s public
key.

2. Assume that the sender wallet address has isBouncable=1 and isTestnetOnly=0
and set salt to the user-friendly address ↗ representation of it.

3. Create a cryptographically secure and randomprefix such that themessage length is
divisible by 16 (i.e., the AES block length). The prefix is at least 16, and atmost 31 bytes
long.

4. Calculate an HMAC over the prefixed data, using salt as the secret. Then calculate
anotherHMACover the result, using the shared secret as the next secret (using SHA-
512 both times). The first 32 bytes of this becomes the AES-CBC key, and the next 16
bytes becomes the initialization vector (IV).

The data is encrypted using the key and IV, and this is sent alongwith the first calculatedHMAC.
The receiver will be able to recalculate the rest based on the shared secret. As an optimization,
the sender and receiver key is XORed together and sent alongwith themessage, so it is not nec-
essary to look up the public key of the other.

Another mode in SimpleEncryption is for encrypting and decrypting data directly (e.g.,
td::SecureString SimpleEncryption::encrypt_data(td::Slice data, td::Slice se-
cret)). For this function, it is crucial that the secret comes from a secure and secret source.
It is used together with the SHA-256 hash of the prefixed data to derive the encryption key, and
this hash is prefixed onto the encryptedmessage. It is also crucial that themessage hash is ver-
ified before any attempts are done to unpad, deserialize, or otherwise parse the decrypted data,
as this could leak secret data through thepropagatederrormessages. The reference implemen-
tation does this well enough but also opts to use the message hash as the HMAC secret, which
is nonstandard and would be dangerous if that data were not randomly prefixed before encryp-
tion.

5.3. Module: TonlibClient.cpp

Class: AccountState

The AccountState class contains various helper functions for dealing with a RawAccountState,
allowing it to be easily used by other classes. On construction, it calls guess_type to try and de-
termine thewallet type based on the code hash of the account state. After determining the type,
the class canbe used to convert the data and code cells into the appropriate Tonlib classes.

Zellic © 2023 ← Back to Contents Page 34 of 38

https://docs.ton.org/learn/overviews/addresses#user-friendly-address

Tonlib Smart Contract Security Assessment November 21, 2023

Class: GetMasterchainBlockSignatures

The GetMasterchainBlockSignatures class is used to fetch the signatures of a block. It first
retrieves the latest block ID, then looks up the previous block by querying the lite server. The
returned block is checked to ensure that the seqno is one less than the latest block, and then
a proof for it is requested and validated. If valid, a proof for the latest block is requested and
validated before returning the signatures from the last link of the proof chain.

Class: GetRawAccountState

The GetRawAccountState class is used to fetch the account state for an address using either a
provided block ID or using the latest block. The returned account state is then validated against
the requested block ID and address. It is used by various different classes for fetching the ac-
count state and exposed to clients via the raw.getAccountState request.

Class: GetShardBlockProof

The GetShardBlockProof class is used to get and retrieve aMerkle proof for a shardchain block
by calling liteServer.getShardBlockProofon the lite server. All the returned links from the lite
serverarevalidated toensure theproof iscorrect, then theproof for themasterchain is requested
and validated. The proof is then returned to the caller.

Class: GetTransactionHistory

The GetTransactionHistory class is used by the tonlib_api::raw_getTransactions to fetch
transactions for anaccount starting fromanexistingtransactionId. It queries the lite serverus-
ing liteServer.getTransactions, then validates the returned proof to ensure that the returned
transactions are legitimate for the requested transaction hash.

Class: Query

The Query class is used by the TonlibClient in the queries_map to keep track ofwhich query IDs
have been registered, and it contains numerous helper functions for workingwith the raw query
and to calculate the gas cost and fee estimate of the query.

Class: RemoteRunSmcMethod

The RemoteRunSmcMethod class runs an SMCmethod on the lite server either using the supplied
block IDor the latest block if none isprovided. It validates theaccount state fromthe returned run
results against the requested block ID and address. It is used by the TonlibClient for performing
various DNS queries.

Zellic © 2023 ← Back to Contents Page 35 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

Class: RunEmulator

The RunEmulator class is used for fetching the account state for an address just after the sup-
plied transaction has been run. It does this by first requesting the block header for the specified
address shard and verifying the proof. It then fetches the masterchain state root from the lite
server using the liteServer_getConfigAll request and validates it against the block ID from the
previous step. It then requests the account state using GetRawAccountState, the block transac-
tion IDs, and then the transaction history for each of the returned IDs. Once all the transactions
have been fetched, it uses the emulator::TransactionEmulator to emulate them to determine
the state of the account and returns it.

Class: TonlibClient

The TonlibClient class is the main entry point for clients wishing to make requests to lite
servers, to interact with local wallets, or to configure the Tonlib library itself. It contains all the
handlers for requests generatedwith from the tonlib_api.tl and is themain class that ties to-
gether all the other classes in the library.

A client initiates a request using the TonlibClient::request function along with an ID and a
tonlib_api::Function:

TonlibClient::request(td::uint64 id,
tonlib_api::object_ptr<tonlib_api::Function> function)

If the request is a static one (for example, tonlib_api::setLogVerbosityLevel), then it is im-
mediately runand theon_result function is called, passing the response to theTonlibCallback
specified when the TonlibClient was created. For nonstatic requests, the state is checked to
ensure that it is not closedor uninitialized (the tonlib_api::initmust be the first requestmade
to set up the library). The appropriate do_request is then called to handle the request, which
when complete will call the on_result function.

Class: TonlibQueryActor

The TonlibQueryActor class is a base class that implements the send_query, allowing other
classes to send queries to the client without needing to reimplement the send_querymethod.
It is used by the following classes:

• GuessRevisions — Used by the tonlib_api::guessAccountRevision handler to
fetch theaccount state for theprovided targets anddetermines thedifferent revisions
based on the code hash.

• GenericCreateSendGrams—Used by the tonlib_api::createQuery handler to per-
form various actions such as managing DNS, restricted wallets, payment channels,
and sendingmessages/grams.

Zellic © 2023 ← Back to Contents Page 36 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

5.4. Module: tonlib-cli.cpp

Class: TonlibCli

The TonlibCli class is themain class for theCLI that invokes theTonlib for theuser and includes
some convenience features such as keymanagement. Some of the features include the follow-
ing:

• Get basic information about a lite server such as server timestamp and capabilities
• Management of lite server instances in a configuration file
• Query information about the state of the blockchain
• Call smart contract methods
• Make transactions for accounts with a saved private key
• Save, encrypt, and decrypt client keys

The attack surface of the client CLI can come from copied configuration files from untrusted
sources, being invoked on behalf of an untrusted party with arbitrary input, and in an unlikely
scenario, malicious lite servers attacking not Tonlib itself but the CLI.

Zellic © 2023 ← Back to Contents Page 37 of 38

Tonlib Smart Contract Security Assessment November 21, 2023

6. Assessment Results At the time of our assessment, the reviewed codewas deployed to the TONmainnet.

During our assessment on the scoped Tonlib classes, we discovered 12 findings. No critical is-
sues were found. One finding was of high impact, two were of medium impact, five were of
low impact, and the remaining findings were informational in nature. TON acknowledged and
addressed all identified findings, with the exception of finding 3.7. ↗, which has been acknowl-
edged.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its
scope; in other words, the evaluation results do not guarantee the absence of any subsequent
issues. Zellic, of course, also cannot make guarantees about any code added to the project af-
ter the version reviewed during our assessment. Furthermore, because a single assessment
can never be considered comprehensive, we always recommendmultiple independent assess-
ments paired with a bug bounty program.

For eachfinding, Zellic provides a recommendedsolution. All code samples in these recommen-
dations are intended to convey how an issuemay be resolved (i.e., the idea), but theymay not be
tested or functional code. These recommendations are not exhaustive, and we encourage our
partners to consider them as a starting point for further discussion. We are happy to provide
additional guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not con-
strue any information in this report as legal, tax, investment, or financial advice. Nothing con-
tained in this report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2023 ← Back to Contents Page 38 of 38

	About Zellic
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Tonlib
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Missing proof check for blocks.getShards
	Missing proof check for Emulator transactions
	The handler for blocks_lookupBlock does not check proof
	Returned block header not checked
	Blank block header returned on error
	Directory traversal in KeyValueDir
	Creating a raw query does not set the destinations
	The smc_getLibraries handler lacks check for all libraries received
	The buffer_to_hex utility function reverses nibbles
	Hardcoded constants used without a name
	The query.forget handler does not forget the query
	Missing check call in RemoteRunSmcMethod

	Discussion
	Uncompiled and unused files
	Test coverage

	Threat Model
	Messaging
	Module: SimpleEncryption.cpp
	Module: TonlibClient.cpp
	Module: tonlib-cli.cpp

	Assessment Results
	Disclaimer

