
TON Blockchain TVM Upgrade
Security Assessment

October 27, 2023

Prepared for:

Dr. Elias
TON Foundation

Prepared by: Samuel Moelius, Evan Sultanik, and Henrik Brodin

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be business confidential information; it is
licensed to TON Foundation under the terms of the project statement of work and
intended solely for internal use by TON Foundation. Material within this report may not be
reproduced or distributed in part or in whole without the express written permission of
Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6
Project Goals 9
Project Targets 10
Project Coverage 11
Automated Testing 13
Codebase Maturity Evaluation 15
Summary of Findings 17
Detailed Findings 19

1. Inadequate testing 19
2. Insufficient code comments 21
3. Hash bit ordering differs from FIPS 202 22
4. Action phase fines can be bypassed 24
5. Use of deprecated OpenSSL APIs 26
6. MULADDDIVMOD and related instructions have unclear behavior 27
7. Undefined behavior in CyclicBlobViewImpl 29
8. Use of blst version with new-delete mismatch 31
9. Arithmetic opcodes handled inconsistently 33
10. Inconsistencies between arithmetic operations’ implementation and
specification 35
11. Missing call to normalize in ADDDIVMOD implementation 37
12. Use of deprecated cryptographic APIs 40
13. Bignum can segfault when converting to string or hex 41
14. Risk of infinite loop during RaptorQ FEC 43
15. Missing to call to normalize in MULADDRSHIFT#MOD implementation 45
16. BLS gas costs are inconsistent with specification 48
17. Use of libsodium might stall the process 50
18. RIST255_MUL uses nonstandard method for handling errors 51
19. Cell slices for public keys and signatures can have excess data 53
20. Divergent behavior among BLS instructions when n is 0 54

Trail of Bits 3 TVM Upgrade Security Assessment
CONFIDENTIAL

21. Uninitialized data read when downcast_call fails 55
22. Register c7 tuple element “previous blocks” can be null 57

A. Vulnerability Categories 58
B. Code Maturity Categories 60
C. Data Used for TOB-TVMUP-2 62
D. Non-Security-Related Findings 71
E. Keccak Fuzzing Code 77
F. Arithmetic Instruction Fuzzing Code 81
G. Fix Review Results 87

Detailed Fix Review Results 89

Trail of Bits 4 TVM Upgrade Security Assessment
CONFIDENTIAL

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Anne Marie Barry, Project Manager
dan@trailofbits.com annemarie.barry@trailofbits.com

The following engineers were associated with this project:

Samuel Moelius, Consultant Evan Sultanik, Consultant
samuel.moelius@trailofbits.com evan.sultanik@trailofbits.com

Henrik Brodin, Consultant
henrik.brodin@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

August 3, 2023 Pre-project kickoff call

August 14, 2023 Status update meeting #1 (canceled)

August 21, 2023 Status update meeting #2

August 28, 2023 Delivery of report draft

August 28, 2023 Report readout meeting

September 26, 2023 Delivery of comprehensive report

October 23, 2023 Fix review kickoff

October 27, 2023 Delivery of comprehensive report with fix review

Trail of Bits 5 TVM Upgrade Security Assessment
CONFIDENTIAL

Executive Summary

Engagement Overview
TON Foundation engaged Trail of Bits to review the security of its upgrade to the TON
Virtual Machine (TVM). The upgrade changes the way that various aspects of the TVM work
and introduces many new instructions. Many of the new instructions add support for new
hashing and cryptographic algorithms.

A team of three consultants conducted the review from August 7 to August 25, 2023, for a
total of seven engineer-weeks of effort. Our testing efforts focused on code that was added
or changed by the upgrade. With full access to the source code and documentation, we
performed static and dynamic testing of the codebase, using automated and manual
processes.

Observations and Impact
The two areas we find most concerning involve the project’s integer type and its use of
tests.

● BigInt is used to perform arithmetic on integers larger than the host machine’s
native word size. For reasons that are not clear to us, it allows for multiple
representations of the same integer. A normalize function can be used to put an
integer into a canonical form. However, it is similarly unclear to us when such calls
are needed. That is, while calls to normalize appear in various parts of the code,
we could not infer a pattern. Two high-severity findings in this report involve missing
calls to normalize (TOB-TVMUP-11 and TOB-TVMUP-15).

Arithmetic is an area of special concern to blockchain applications, as many such
applications maintain account balances. Generally speaking, a flaw that causes an
account’s balance to be computed incorrectly could be exploited.

For the reasons just given, blockchain code involving arithmetic should be
straightforward, well documented, and written in a way that makes the absence of
errors obvious. For reasons outlined above, BigInt’s current implementation does
not seem to meet these requirements.

● Many of the problems exposed in this report could have been found through better
testing. The project does use the CTest framework, but the extent is unclear. For
example, there is no evidence that the tests are run in CI. Furthermore, some tests
that did not pass were referred to as “old.” Thus, testing does not seem to be
applied rigorously and effectively.

Trail of Bits 6 TVM Upgrade Security Assessment
CONFIDENTIAL

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that TON Foundation take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Adopt an integer type that allows for only one representation of each integer.
Such an integer type could be external (e.g., the one provided by the GMP library), or
it could be an adaptation of the existing BigInt implementation. Regardless, the
current BigInt implementation seems highly error-prone, and an alternative
should be sought.

● Expand the project’s use of tests. Many of the problems exposed in this report
could have been found through better testing. Specifically, the following steps
should be taken.

○ Add instructions to the project’s README.md file on how to run the tests.

○ Run the tests in CI.

○ Regularly compute and review test coverage to ensure that important
conditions are tested.

○ Explore advanced testing methods such as property-based and fuzz testing.

Trail of Bits 7 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gmplib.org/

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 6

Medium 0

Low 4

Informational 9

Undetermined 3

CATEGORY BREAKDOWN

Category Count

Cryptography 1

Data Validation 5

Denial of Service 1

Patching 3

Testing 1

Timing 1

Undefined Behavior 10

After the engagement concluded, Trail of Bits reviewed the fixes and mitigations
implemented by the TON team for the issues identified in this report. The following table
summarizes the results of our fix review. For more information, refer to the detailed fix
review results in appendix G.

FIX STATUSES

Fix Status Count

Resolved 16

Partially Resolved 5

Undetermined 1

Trail of Bits 8 TVM Upgrade Security Assessment
CONFIDENTIAL

Project Goals

The engagement was scoped to provide a security assessment of the TVM upgrade.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Are the new opcodes implemented correctly?

● Are newly introduced dependencies (e.g., libsodium and blst) used correctly?

● Are the new opcodes’ behaviors consistent with the documentation?

● Is there any way that newly introduced functionality could cause users to lose
money?

● Does any of the newly introduced code contain undefined behavior?

Trail of Bits 9 TVM Upgrade Security Assessment
CONFIDENTIAL

Project Targets

The engagement involved a review and testing of the following target.

TON
Repository https://github.com/ton-blockchain/ton

Version 6074702d059fee2b9456e47c294693447ca222ef

Type C++

Platform POSIX

TON Documentation
Repository https://github.com/ton-community/ton-docs

Version 8b1140e38a1b148498706c9375eb34034f2967d1

Type Documentation

Trail of Bits 10 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton
https://github.com/ton-community/ton-docs/commit/8b1140e38a1b148498706c9375eb34034f2967d1

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Documentation review: We carefully reviewed the TVM upgrade documentation.

● Static analysis: We ran the static analysis tools Cppcheck, Clang Static Analyzer, and
CodeQL over the codebase and reviewed their results.

● Test coverage review: We ran all tests and reviewed which did and did not pass.
We also computed the tests’ coverage using gcovr and reviewed the results to look
for important conditions that could be missed.

● Fuzzing: We differentially fuzzed the TVM’s Keccak implementation against a similar,
third-party implementation. We also fuzzed the new arithmetic instructions against
manual computations written from the instructions’ specifications.

● Manual review: We manually reviewed all code involved in the upgrade (i.e., PR
#686), but with special focus on the following areas:

○ Changes affecting the TVM’s behavior generally (e.g., changes to the c7 tuple)

○ Changes to transaction.cpp enabled by setting the global_version to
be at least 4

○ New arithmetic instructions

○ New hashing instructions

○ New hashing implementations (Keccak-256 and Keccak-512)

○ secp256k1 and secp256r1 instructions

○ Ristretto instructions

○ BLS12-381 instructions

○ The RUNVM instruction

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive testing of the
following system elements, which may warrant further review:

Trail of Bits 11 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://cppcheck.sourceforge.io/
https://clang-analyzer.llvm.org/
https://codeql.github.com/
https://github.com/gcovr/gcovr
https://github.com/ton-blockchain/ton/pull/686
https://github.com/ton-blockchain/ton/pull/686

● As mentioned elsewhere, the state of the project’s tests is unclear. We commonly
use tests to learn how functions are meant to be used and what invariants they are
expected to maintain. Our ability to do this with the current tests was limited.

● Due to time constraints, the Keccak implementations were fuzzed, but not the
instructions that exercise the Keccak implementations.

● We were not able to exhaustively check all instructions’ gas costs. We recommend
that gas costs be verified with tests.

Trail of Bits 12 TVM Upgrade Security Assessment
CONFIDENTIAL

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

● Cppcheck: A static analysis tool for C/C++ code that focuses on detecting undefined
behavior and risky coding constructs

● Clang Static Analyzer: A source code analysis tool that finds bugs in C, C++, and
Objective-C programs

● CodeQL: A semantic code analysis engine that allows users to query code as though
it were data

○ We ran CodeQL with both the publicly available queries and a collection of
our own internally developed queries.

● AFLplusplus: A widely used fork of Google's American Fuzzy Lop (AFL) fuzzer

Fuzzing
We developed fuzzers for the targets listed in the table below.

The upgrade to the TVM introduced new hashing modes, including Keccak-256 and
Keccak-512. We differentially fuzzed the implementations of these new hashing modes
against slight variants of the SHA-256 and SHA-512 reference implementations. These
efforts resulted in one informational-severity finding (TOB-TVMUP-3). The code used to
perform the fuzzing appears in appendix E.

We also fuzzed 24 new arithmetic instructions. Specifically, we wrote code to compute each
instruction’s result based on its specification. We then called the instruction and verified
that the expected result matched the one that was actually computed. These efforts
resulted in one low-severity finding (TOB-TVMUP-10) and two high-severity findings
(TOB-TVMUP-11 and TOB-TVMUP-15). The code used to perform the fuzzing appears in
appendix F.

Trail of Bits 13 TVM Upgrade Security Assessment
CONFIDENTIAL

https://cppcheck.sourceforge.io/
https://clang-analyzer.llvm.org/
https://codeql.github.com/
https://github.com/AFLplusplus/AFLplusplus

Fuzz Targets Findings

Hasher::KECCAK256 and Hasher::KECCAK512 TOB-TVMUP-3

The 24 new arithmetic instructions described in the upgrade
documentation, where ? determines the rounding mode and ranges
over the empty string (floor), R (round), and C (ceiling)

● MULADDDIVMOD?

● ADDDIVMOD?

● ADDRSHIFTMOD?

● z ADDRSHIFT?#MOD

● MULADDRSHIFT?MOD

● z MULADDRSHIFT?#MOD

● LSHIFTADDDIVMOD?

● y LSHIFT#ADDDIVMOD?

TOB-TVMUP-10
TOB-TVMUP-11
TOB-TVMUP-15

Trail of Bits 14 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Potentially overflowing arithmetic is not sufficiently
documented. No explicit testing strategy has been
identified to increase confidence in the system’s
arithmetic. The test suite does not cover several
arithmetic edge cases.

Weak

Auditing The TVM has robust logging and debugging capabilities. Satisfactory

Authentication /
Access Controls

Authentication and access controls were not within the
scope of this audit.

Not
Considered

Complexity
Management

We found the code to be relatively clear. The constructs
and idioms used are well known, and the code generally
contains few surprises. Nonetheless, we found the code
to be lacking comments. Additional comments could be
used to clarify each function’s purpose and to
communicate the developer’s intent in various parts of
the code. Also, the code relies on outdated
dependencies.

Moderate

Cryptography
and Key
Management

We found only minor issues related to cryptography in
newly introduced instructions. However, the code uses
deprecated OpenSSL APIs, which should be updated. The
code also contains implementations of deprecated
cryptographic algorithms, which should be removed.

Moderate

Decentralization Decentralization was not within the scope of this audit. Not
Considered

Documentation TON has comprehensive and thorough documentation.
However, there appear to be different versions in

Moderate

Trail of Bits 15 TVM Upgrade Security Assessment
CONFIDENTIAL

existence (e.g., the version provided to us versus a
version available on ton.docs.org). Moreover, we found
several discrepancies between the documentation and
the implementation. Also, as mentioned elsewhere, the
code would benefit from additional inline comments.

Front-Running
Resistance

Some TVM changes did affect how transactions are
handled. These changes did not have immediate or
obvious impacts on front-running resistance. However,
further investigation would be required to reach a
meaningful conclusion.

Further
Investigation
Required

Low-Level
Manipulation

The code’s big integer type allows for multiple
representations of the same integer. A normalize
function can be used to put an integer into a canonical
form. However, it is not clear when the function must be
used. We found multiple bugs that seem to result from
failures to call normalize.

Weak

Testing and
Verification

The project lacks instructions for building and running its
tests. There is no evidence that tests are run in CI. Some
critical pieces of code (e.g., transaction.cpp) appear to
be untested. Also, many of the problems exposed in this
report could have been found through better testing.

Weak

Trail of Bits 16 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://docs.ton.org/learn/tvm-instructions/tvm-upgrade-2023-07
https://docs.ton.org/learn/tvm-instructions/tvm-upgrade-2023-07

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Inadequate testing Testing Informational

2 Insufficient code comments Patching Informational

3 Hash bit ordering differs from FIPS 202 Cryptography Informational

4 Action phase fines can be bypassed Data Validation Undetermined

5 Use of deprecated OpenSSL APIs Patching Informational

6 MULADDDIVMOD and related instructions have
unclear behavior

Undefined
Behavior

Informational

7 Undefined behavior in CyclicBlobViewImpl Undefined
Behavior

High

8 Use of blst version with new-delete mismatch Undefined
Behavior

High

9 Arithmetic opcodes handled inconsistently Undefined
Behavior

Informational

10 Inconsistencies between arithmetic operations’
implementation and specification

Undefined
Behavior

Low

11 Missing call to normalize in ADDDIVMOD
implementation

Undefined
Behavior

High

12 Use of deprecated cryptographic APIs Patching Informational

Trail of Bits 17 TVM Upgrade Security Assessment
CONFIDENTIAL

13 Bignum can segfault when converting to string or
hex

Data Validation Informational

14 Risk of infinite loop during RaptorQ FEC Denial of Service Undetermined

15 Missing to call to normalize in
MULADDRSHIFT#MOD implementation

Undefined
Behavior

High

16 BLS gas costs are inconsistent with specification Undefined
Behavior

Low

17 Use of libsodium might stall the process Timing Low

18 RIST255_MUL uses nonstandard method for
handling errors

Data Validation High

19 Cell slices for public keys and signatures can have
excess data

Data Validation Low

20 Divergent behavior among BLS instructions when
n is 0

Data Validation Informational

21 Uninitialized data read when downcast_call fails Undefined
Behavior

High

22 Register c7 tuple element “previous blocks” can be
null

Undefined
Behavior

Undetermined

1

1 For information about the fix statuses of these findings, refer to appendix G.

Trail of Bits 18 TVM Upgrade Security Assessment
CONFIDENTIAL

Detailed Findings

1. Inadequate testing

Severity: Informational Difficulty: High

Type: Testing Finding ID: TOB-TVMUP-1

Target: README.md and the .github/workflows and test subdirectories

Description
The TON repository is inadequately tested. Code should be tested thoroughly to help
ensure its correctness.

The TON repository suffers from the following specific deficiencies:

● The repository does not contain instructions for running the tests.

● Several of the existing tests fail when run (figure 1.1).

● There is no evidence that tests are run in CI.

● Several source files appear to be completely untested (e.g., transaction.cpp,
referenced in finding TOB-TVMUP-4).

$ make test
Running tests...
...
The following tests FAILED:

4 - test-vm (Failed)
7 - test-smartcont (Failed)
11 - test-tonlib-offline (Failed)

Errors while running CTest

Figure 1.1: Output produced by running make test

Exploit Scenario
A bug is found in the TVM. The bug could have been exposed by more thorough unit tests.

Recommendations
Short term, take the following steps:

● Add instructions to the project’s README.md file on how to run the tests.

Trail of Bits 19 TVM Upgrade Security Assessment
CONFIDENTIAL

● Run the tests in CI.

● Ensure that CI fails if any test fails.

Taking these steps will help increase confidence in the TVM.

Long term, regularly compute and review test coverage using a tool such as gcovr. Doing
so will help ensure that the tests are relevant and that all important conditions are tested.

Trail of Bits 20 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/gcovr/gcovr

2. Insu�cient code comments

Severity: Informational Difficulty: High

Type: Patching Finding ID: TOB-TVMUP-2

Target: The crypto subdirectory

Description
The TVM source code is inadequately commented. Having too few comments can cause
code to be misunderstood, which increases the likelihood of an improper bugfix or a
mis-implemented feature.

There are 138 files ending in .cpp in the crypto subdirectory. In total, those files consist of
97,649 lines. Of those lines, 4,015 contain line comments (i.e., match the regular expression
//.*). Thus, approximately 4.11% of the lines composing all .cpp files in the crypto
subdirectory contain line comments. (See appendix C for the raw data used for this
calculation.)

Exploit Scenario
Alice, a TON developer, implements a new feature for the TVM. Alice misunderstands how
the functions called by her new feature work. Alice introduces a vulnerability into the virtual
machine as a result.

Recommendations
Short term, add comments to the source files in the crypto subdirectory. Ensure that, for
each function accessible from outside its translation unit, at least one of the following is
true.

● The function’s definition is preceded by a comment.

● The function’s prototype (in the function’s respective header) is preceded by a
comment.

Taking these steps will facilitate code review and reduce the likelihood that a developer
introduces a bug into the code because of a misunderstanding.

Long term, regularly review code comments to ensure they are accurate. Documentation
must be kept up to date to be beneficial.

Trail of Bits 21 TVM Upgrade Security Assessment
CONFIDENTIAL

3. Hash bit ordering di�ers from FIPS 202

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-TVMUP-3

Target: crypto/vm/Hasher.cpp, crypto/common/bitstring.cpp, TVM Instructions
documentation

Description
The TVM supports bit-level hashing, using most significant bit (MSB) ordering when the
input does not end on a byte boundary. FIPS 202 defines the SHA3-256 and SHA3-512
algorithms, which are minor variants of algorithms used by TON. However, FIPS 202 uses
least significant bit (LSB) ordering. This discrepancy could cause confusion for users.

The TVM treats byte sequences as having MSB ordering, generally.2 This is evident from the
TVM source code (figure 3.1).

int mask = (-0x100 >> bit_count) & (0xff >> to_offs);

Figure 3.1: crypto/common/bitstring.cpp#L137

However, FIPS 202 uses LSB ordering. This is clear from the specification3 and from its
reference implementation (figure 3.2).

if(csk->lastByteBitLen != 0)
csk->lastByteValue = input[inputBitLen / 8] & ((1 << csk->lastByteBitLen) - 1);

/* strip unwanted bits */

Figure 3.2: XKCP/lib/high/Keccak/SP800-185/SP800-185.inc#L88–L89

As shown in figure 3.3, SHA3-256 and SHA3-512 (algorithms defined in FIPS 202) are only
slight variants of Keccak-256 and Keccak-512 (algorithms that the TVM supports). Thus,
users familiar with SHA3-256 and SHA3-512 are likely to assume that the TVM’s Keccak-256
and Keccak-512 implementations use the same bit ordering.

/** Macro to initialize a SHA3-256 instance as specified in the FIPS 202 standard.
*/

#define Keccak_HashInitialize_SHA3_256(hashInstance)
Keccak_HashInitialize(hashInstance, 1088, 512, 256, 0x01)

3 See section B.1 (pages 26 and 27) of FIPS 202.

2 See section 1.0 (page 5) of the Telegram Open Network Virtual Machine white paper.

Trail of Bits 22 TVM Upgrade Security Assessment
CONFIDENTIAL

https://docs.ton.org/learn/tvm-instructions/instructions
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/common/bitstring.cpp#L137
https://github.com/XKCP/XKCP/blob/f7fe32a80f0c6600d1c5db50392a43265d3bba9a/lib/high/Keccak/SP800-185/SP800-185.inc#L88-L89
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf
https://ton.org/tvm.pdf

/** Macro to initialize a SHA3-384 instance as specified in the FIPS 202 standard.
*/

#define Keccak_HashInitialize_SHA3_384(hashInstance)
Keccak_HashInitialize(hashInstance, 832, 768, 384, 0x06)

/** Macro to initialize a SHA3-512 instance as specified in the FIPS 202 standard.
*/

#define Keccak_HashInitialize_SHA3_512(hashInstance)
Keccak_HashInitialize(hashInstance, 576, 1024, 512, 0x01)

Figure 3.3: Changes to XKCP/lib/high/Keccak/FIPS202/KeccakHash.h#L71–L81 that
cause it to implement Keccak-256 and Keccak-512

Exploit Scenario
Alice, a TON developer, writes code that applies Keccak-256 to sequences of partial bytes.
Being familiar with SHA3-256, Alice expects bits from incomplete bytes to come from the
lower end. Because the TVM instead takes the bits from the upper end, Alice’s code does
not work correctly.

Recommendations
Short term, conspicuously document this discrepancy in all TVM documentation involving
hashing operations (e.g., under TVM Instructions). Doing so will help alert users to the fact
that the TVM’s behavior differs from certain related standards (e.g., FIPS 202).

Long term, as new instructions are introduced into the TVM, consider “prior art,” that is,
similar implementations that users may be familiar with. Where possible, emulate the
existing behavior, or document the discrepancy. Doing so will reduce the likelihood of users
being confused.

Trail of Bits 23 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/XKCP/XKCP/blob/f7fe32a80f0c6600d1c5db50392a43265d3bba9a/lib/high/Keccak/FIPS202/KeccakHash.h#L71-L81
https://docs.ton.org/learn/tvm-instructions/instructions

4. Action phase fines can be bypassed

Severity: Undetermined Difficulty: Low

Type: Data Validation Finding ID: TOB-TVMUP-4

Target: crypto/block/transaction.cpp

Description
Figure 4.1 is an excerpt of the new code responsible for calculating action phase fines.

1709 if (compute_phase) {
1710 new_funds -= compute_phase->gas_fees;
1711 }
1712 new_funds -= ap.action_fine;
1713 if (new_funds->sgn() < 0) {
1714 LOG(DEBUG)
1715 << "not enough value to transfer with the message: all of the
inbound message value has been consumed";
1716 return skip_invalid ? 0 : 37;
1717 }
1718 }
1719 funds = std::min(funds, new_funds);

Figure 4.1: New fee and fine calculation code
(ton/crypto/block/transaction.cpp#1709–1719)

The funds and new_funds variables are signed integers, so they can go negative if the
gas_fees and action_fine are sufficiently larger than the initial balance. Line 1716
handles such cases, rejecting the message. However, the transaction balance is not
modified, since this would otherwise occur later in the function (line 1748 of figure 4.2).

1741 auto collect_fine = [&] {
1742 if (cfg.action_fine_enabled && !account.is_special) {
1743 td::uint64 fine = fine_per_cell * std::min<td::uint64>(max_cells,
sstat.cells);
1744 if (ap.remaining_balance.grams->cmp(fine) < 0) {
1745 fine = ap.remaining_balance.grams->to_long();
1746 }
1747 ap.action_fine += fine;
1748 ap.remaining_balance.grams -= fine;
1749 }
1750 };
1751 if (sstat.cells > max_cells && max_cells < cfg.size_limits.max_msg_cells) {
1752 LOG(DEBUG) << "not enough funds to process a message (max_cells=" <<
max_cells << ")";

Trail of Bits 24 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/block/transaction.cpp#L1709-L1719

1753 collect_fine();
1754 return skip_invalid ? 0 : 40;
1755 }

Figure 4.2: The fine is subtracted from the balance
(crypto/block/transaction.cpp#1741–1755)

This finding is of undetermined severity because there was insufficient time to produce a
proof of concept demonstrating that this vulnerability is exploitable.

Exploit Scenario
An attacker crafts a transaction whose fine would be in excess of its balance. For example,
the transaction could attempt to send an arbitrary number of messages with an insufficient
amount of grams, causing the messages to fail but without the intended fine. This enables a
denial of service attack against the TON verifiers.

Recommendations
Short term, ensure that the balance is zeroed out if there are insufficient funds to pay the
gas fees and fine.

Long term, consider creating a new unsigned integer type that throws an exception on
underflow and overflow and using this type to represent balances.

Trail of Bits 25 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/block/transaction.cpp#L1741-L1755

5. Use of deprecated OpenSSL APIs

Severity: Informational Difficulty: Low

Type: Patching Finding ID: TOB-TVMUP-5

Target: tdutils/td/utils/{BigNum.cpp, crypto.cpp}

Description
TON uses several OpenSSL APIs that have been deprecated. Specifically, the
BN_is_prime_ex, BN_is_prime_fasttest_ex, AES_set_encrypt_key,
AES_cbc_encrypt, SHA256_Init, SHA256_Update, SHA256_Final, and MD5 APIs have
been deprecated.

These APIs may be removed from a future version of OpenSSL, do not prevent improper or
insecure configurations, and may not receive future security updates.

Exploit Scenario
An attacker exploits a security vulnerability in one of these APIs that was not patched
because the API is no longer supported.

Recommendations
Modern OpenSSL has a newer “Envelope” (EVP) interface that provides a consistent and
abstracted API for various cryptographic operations, including symmetric encryption,
message digests, public key encryption, and digital signatures.

The EVP API allows developers to work with different cryptographic algorithms without
having to directly interact with the low-level implementation details. It provides a unified
interface for cryptographic operations, making it easier to write secure and portable code.

By using the EVP interface, developers can write code that is not tied to a specific algorithm,
making it more flexible and adaptable to different requirements and configurations. It
abstracts the complexity of cryptographic operations and provides a higher level of security
by handling various aspects, such as key management and algorithm selection, in a
standardized manner.

Short term, remove all uses of deprecated functions and switch to the EVP interface.

Long term, implement static analysis in CI to detect and reject modifications that would
introduce code that uses deprecated APIs.

Trail of Bits 26 TVM Upgrade Security Assessment
CONFIDENTIAL

https://wiki.openssl.org/index.php/EVP

6. MULADDDIVMOD and related instructions have unclear behavior

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TVMUP-6

Target: crypto/vm/arithops.cpp

Description
The instruction MULADDDIVMOD is defined to have the following stack behavior:
x y w z - q=floor((xy+w)/z) r=(xy+w)-zq.

Consider the Fift code in figure 6.1.

-9759082887665682234492322154775530384411992376527688831861932665504690795898
PUSHINT
13 PUSHINT
2 PUSHINT
-6 PUSHINT
MULADDDIVMODR

Figure 6.1: Example Fift code that successfully computes a result even though the multiplication
operation overflows

Even though x * y is less than -2256, the program successfully computes the following:

q =
211446795899423115080666980020136491662259834824766591357008
54108593496724445

r= -2

It is not clear under what circumstances the MULADDDIVMOD and related new operations
are and are not expected to produce an exception.

Multiply-then-divide operations are defined to compute the product using 513 bits (Fift
manual, section 2.5). For the operations in the updated version, there is no information
about the circumstances under which one can expect an exception. As some of the new
operations contain both multiplication and addition, there are more potential overflow
cases.

Trail of Bits 27 TVM Upgrade Security Assessment
CONFIDENTIAL

Exploit Scenario
A smart contract implements logic that assumes an exception is raised for out-of-range
values. As a larger intermediate bit size could correctly compute larger values, an
unexpected value is returned and the logic fails, causing the loss of funds.

Recommendations
Short term, implement test cases to verify that the expected boundary conditions hold for
the respective operation. Document under what circumstance the out-of-range values are
produced.

Long term, introduce a template for how instructions are described such that it clearly
describes expectations on input and output range and other limitations.

Trail of Bits 28 TVM Upgrade Security Assessment
CONFIDENTIAL

7. Undefined behavior in CyclicBlobViewImpl

Severity: High Difficulty: Undetermined

Type: Undefined Behavior Finding ID: TOB-TVMUP-7

Target: tddb/td/db/utils/BlobView.cpp

Description
The CyclicBlobViewImpl class’s view_impl method, shown in figure 7.1, has undefined
behavior on line 317 when the value of data_.size() is zero, as the use of the modulo
operator with a zero operand is undefined behavior. See INT33-C for more information.

315 td::Result<td::Slice> view_impl(td::MutableSlice slice, td::uint64 offset)
override {
316 auto res = slice;
317 offset %= data_.size();
318 while (!slice.empty()) {
319 auto from = data_.as_slice().substr(offset).truncate(slice.size());
320 slice.copy_from(from);
321 slice.remove_prefix(from.size());
322 offset = 0;
323 }
324 return res;
325 }

Figure 7.1: The undefined behavior in CyclicBlobViewImpl
(tddb/td/db/utils/BlobView.cpp#313–325)

The CyclicBlobView implementation is currently used in the Torrent storage test cases.
Code with undefined behavior cannot provide any guarantees for anything, so the test case
cannot be trusted.

Exploit Scenario
Alice, a TON developer, decides to use CyclicBlobViewImpl for different use cases, but
she is not aware that the implementation requires the data size to be greater than zero and
that there is no check preventing misuse of the class. As a result, the code she is developing
for TON invokes undefined behavior.

Recommendations
Short term, add a check that prevents the view_impl function from accepting a
data_.size() of zero.

Trail of Bits 29 TVM Upgrade Security Assessment
CONFIDENTIAL

https://wiki.sei.cmu.edu/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/tddb/td/db/utils/BlobView.cpp#L313-L325

Long term, run static code analysis to detect vulnerabilities. We recommend running such
analysis in CI to prevent issues that can be detected from building successfully.

Trail of Bits 30 TVM Upgrade Security Assessment
CONFIDENTIAL

8. Use of blst version with new-delete mismatch

Severity: High Difficulty: High

Type: Undefined Behavior Finding ID: TOB-TVMUP-8

Target: third-party/blst (i.e., the blst submodule)

Description
The version of blst that TON currently uses contains a new-delete mismatch in the line in
figure 8.1. Such a mismatch is considered undefined behavior by the C++ standard.

The affected line was fixed, as shown in figure 8.2, in commit 327d30a on July 18, 2023.

456 std::unique_ptr<limb_t> scratch{new limb_t[sz/sizeof(limb_t)]};

Figure 8.1: The line that contains the new-delete mismatch in the version of blst that TON
currently uses (bindings/blst.hpp#456)

456 std::unique_ptr<limb_t[]> scratch{new limb_t[sz/sizeof(limb_t)]};

Figure 8.2: The fixed version of the line shown in figure 8.1 (bindings/blst.hpp#456)

The following text from the C++ standard4 indicates that applying delete without [] to
memory allocated by new with [] is undefined behavior:

In the first alternative (delete object), the value of the operand of deletemay
be a null pointer value, a pointer to a non-array object created by a previous
new-expression, or a pointer to a subobject (1.8) representing a base class of
such an object (Clause 10). If not, the behavior is undefined.

Exploit Scenario
Alice builds the TON validator. In her build, the new-delete mismatch introduces a remote
code execution vulnerability. Eve exploits the bug to remotely execute code on Alice’s
machine.

Recommendations
Short term, upgrade the version of blst that TON uses to version 327d30a or later. Doing
so will eliminate the new-delete mismatch and thus a source of undefined behavior.

Long term, take the following steps:

4 Page 113

Trail of Bits 31 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/supranational/blst/commit/327d30a51c858e9c34f5b6eb3a6966b2cf6bc9cc
https://github.com/supranational/blst/blob/e9dfc5ee724b5b25d50a3b6226bee8c2c9d5e65d/bindings/blst.hpp#L456
https://github.com/supranational/blst/blob/327d30a51c858e9c34f5b6eb3a6966b2cf6bc9cc/bindings/blst.hpp#L456
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
https://github.com/supranational/blst/commit/327d30a51c858e9c34f5b6eb3a6966b2cf6bc9cc

● Regularly build and run the tests with -fsanitize=address, as that is how this
problem was found.

● Enable Dependabot for Git submodules. If Dependabot is not a feasible solution,
use a GitHub workflow to automatically check for the latest release of each of TON’s
dependencies. Either of these approaches will alert the TON team to updates and
bug fixes that could otherwise be missed.

Trail of Bits 32 TVM Upgrade Security Assessment
CONFIDENTIAL

https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file#package-ecosystem
https://docs.github.com/en/rest/releases/releases#get-the-latest-release

9. Arithmetic opcodes handled inconsistently

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-TVMUP-9

Target: crypto/fift/lib/Asm.fif, crypto/vm/arithops.cpp, TVM upgrade
documentation

Description
Only four Q (i.e., “quiet”) variants of the 24 new arithmetic opcodes are registered.
Additionally, some “dump” functions produce opcodes that do not match the
documentation. Such behavior is likely to cause confusion.

The TVM upgrade documentation lists 24 new arithmetic opcodes. However, Q variants are
registered for only four (figures 9.1 and 9.2). Moreover, there is no obvious criteria for how
those four were selected.

471 x{B7A900} @Defop QADDDIVMOD
472 x{B7A901} @Defop QADDDIVMODR
473 x{B7A902} @Defop QADDDIVMODC

Figure 9.1: Registration of three new Q opcodes (crypto/fift/lib/Asm.fif#471–473)

476 x{B7A980} @Defop QADDMULDIVMOD

Figure 9.2: Registration of one new Q opcode (crypto/fift/lib/Asm.fif#476)

Additionally, for the MULADDRSHIFTMOD opcode and its variants, the upgrade
documentation denotes the rounding mode before the word “MOD” (e.g., the “R” and “C” in
MULADDRSHIFTRMOD and MULADDRSHIFTCMOD). However, the corresponding dump
function writes the R or C at the end (figure 9.3).

542 std::string dump_mulshrmod(CellSlice&, unsigned args, int mode) {
...

556 switch (args & 12) {
...

566 case 0:
567 os << "MULADDRSHIFTMOD";
568 break;
569 }
570 if (round_mode) {
571 os << "FRC"[round_mode];
572 }

Trail of Bits 33 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/fift/lib/Asm.fif#L471-L473
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/fift/lib/Asm.fif#L476

...
576 return os.str();
577 }

Figure 9.3: The dump function that handles MULADDRSHIFTMOD
(crypto/vm/arithops.cpp#542–577)

Exploit Scenario
Alice, a TON developer, writes code that uses an unregistered Q opcode, expecting the
variant to exist. Alice’s code does not compile. Alice wastes time and effort trying to
understand why.

In another scenario, Alice builds a tool that outputs code using dump_mulshrmod from
figure 9.3. The code that Alice’s tool produces does not compile.

Recommendations
Short term, take the following steps:

● For each of the new 24 arithmetic opcodes, either register a Q variant or document
why the variant is not registered.

● Write tests to verify that the output of each dump function is consistent with the
documentation.

Taking these steps will eliminate two potential sources of confusion.

Long term, as new instructions are introduced into the TVM, ensure that the above
standards are maintained. Doing so will reduce the likelihood of TON developers becoming
confused.

Trail of Bits 34 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L542-L577

10. Inconsistencies between arithmetic operations’ implementation and
specification

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TVMUP-10

Target: crypto/vm/arithops.cpp, TVM upgrade documentation

Description
For ADDRSHIFT#MOD, MULADDRSHIFT#MOD, and their rounding variants, the TVM upgrade
documentation indicates that the operation’s z argument is taken literally from the
instruction. However, what is actually used is z + 1. This discrepancy is likely to cause
errors.

The TVM upgrade documentation states that the following is computed by z
ADDRSHIFT#MOD:

q=floor((x+w)/2^z)

r=(x+w)-q*2^z

However, the implementation uses not z, but z + 1, as shown in figure 10.1. (Note that the
value that is called z in the documentation is called y in figure 10.1.)

333 int exec_shrmod(VmState* st, unsigned args, int mode) {
334 int y = -1;
335 if (mode & 2) {
336 y = (args & 0xff) + 1;
337 args >>= 8;
338 }

...
367 tmp2.rshift(y, round_mode).normalize();

Figure 10.1: The implementation of ADDRSHIFT#MOD
(crypto/vm/arithops.cpp#333–367)

Similarly, the documentation states that the following is computed by z
MULADDRSHIFT#MOD:

q=floor((xy+w)/2^z)

r=(xy+w)-q*2^z

Trail of Bits 35 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L333-L367

However, the implementation uses not z, but z + 1, as shown in figure 10.2.

488 int exec_mulshrmod(VmState* st, unsigned args, int mode) {
489 int z = -1;
490 if (mode & 2) {
491 z = (args & 0xff) + 1;
492 args >>= 8;
493 }

...
525 tmp.rshift(z, round_mode).normalize();

...
530 tmp2.rshift(z, round_mode).normalize();

...
535 tmp.normalize().mod_pow2(z, round_mode).normalize();

Figure 10.2: The implementation of MULADDRSHIFT#MOD
(crypto/vm/arithops.cpp#488–530)

Exploit Scenario
Alice, a TON developer, writes code that uses the ADDRSHIFT#MOD or MULADDRSHIFT#MOD
instruction. Alice’s code does not work correctly.

Recommendations
Short term, either correct the TVM upgrade documentation to match the implementation,
or vice versa. The discrepancy that currently exists is likely to cause errors.

Long term, as new instructions are introduced into the TVM, write tests to verify that the
implementation matches the specification. Doing so could help to expose similar errors.

Trail of Bits 36 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L488-L530

11. Missing call to normalize in ADDDIVMOD implementation

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TVMUP-11

Target: crypto/common/bigint.hpp, crypto/vm/arithops.cpp

Description
In TON, an integer can have multiple representations. BigInt’s normalize function puts
an integer into a canonical form. A call to normalize is missing from the implementation
of ADDDIVMOD, which can cause subsequent comparisons to produce incorrect results.

BigInt’s normalize function puts an integer into a canonical form, such as by ensuring
that the digits it stores internally are within certain bounds (figure 11.1).

691 template <class Tr>
692 bool AnyIntView<Tr>::normalize_bool_any() {
693 word_t val = 0;
694 int i;
695 if (!is_valid()) {
696 return false;
697 }
698 for (i = 0; i < size() && digits[i] < Tr::Half && digits[i] >= -Tr::Half;

i++) {
...

719 }

Figure 11.1: An excerpt of normalize_bool_any, which is called by normalize
(crypto/common/bigint.hpp#691–719)

Many arithmetic operation implementations in the TVM codebase already include calls to
normalize (figure 11.2).

425 int exec_muldivmod(VmState* st, unsigned args, int quiet) {
...

450 switch (d) {
451 case 1:
452 stack.push_int_quiet(td::make_refint(quot.normalize()), quiet);
453 break;
454 case 3:
455 stack.push_int_quiet(td::make_refint(quot.normalize()), quiet);
456 // fallthrough
457 case 2:
458 stack.push_int_quiet(td::make_refint(tmp), quiet);
459 break;

Trail of Bits 37 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/common/bigint.hpp#L691-L719

460 }
461 return 0;
462 }

Figure 11.2: An excerpt of exec_muldivmod
(crypto/vm/arithops.cpp#425–462)

However, the implementation of ADDDIVMOD lacks such a call (figure 11.3).

266 int exec_divmod(VmState* st, unsigned args, int quiet) {
267 ...
283 if (add) {

...
288 stack.push_int_quiet(td::make_refint(quot), quiet);
289 stack.push_int_quiet(td::make_refint(tmp), quiet);
290 } else {

...
305 }
306 return 0;
307 }

Figure 11.3: In the implementation of ADDDIVMOD, the highlighted text should likely be
quot.normalize().

(crypto/vm/arithops.cpp#266–307)

The lack of such a call can cause problems since, for example, BigInt’s cmp function
compares its operands without normalizing them (figure 11.4).

1079 template <class Tr>
1080 int AnyIntView<Tr>::cmp_any(const AnyIntView<Tr>& yp) const {
1081 if (yp.size() < size()) {
1082 return top_word() < 0 ? -1 : 1;
1083 } else if (yp.size() > size()) {
1084 return yp.top_word() > 0 ? -1 : 1;
1085 }
1086 for (int i = size() - 1; i >= 0; i--) {
1087 if (digits[i] < yp.digits[i]) {
1088 return -1;
1089 } else if (digits[i] > yp.digits[i]) {
1090 return 1;
1091 }
1092 }
1093 return 0;
1094 }

Figure 11.4: The cmp_any function, which is called by BigInt’s cmp function
(crypto/common/bigint.hpp#1079–1094)

The issue can be reproduced with the Fift code in figure 11.5.

Trail of Bits 38 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L425-L462
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L266-L307
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/common/bigint.hpp#L1079-L1094

{
=: ans-r =: ans-q
=: z =: w =: x
@' x @' w @' z
<b x{A901} s, b> <s 0 runvmx
.s
abort"Exitcode != 0"
@' ans-r <> abort"Incorrect r"
@' ans-q <> abort"Incorrect q"

} : test

8458484444444444444444444444444444444444448888888888888847
4444444444444444444477788880 -798888888888888888888
-10587810848400556328245438454357052079 290667056403906279575 test

Figure 11.5: This is the Fift code that reproduces the issue. The code errors with “Incorrect q”
because, even though -10587810848400556328245438454357052079 is the correct value,

the literal’s internal representation differs from the computed one.

Exploit Scenario
Alice, a TON developer, writes code that performs a computation using ADDDIVMOD and
compares the result to some other value. The result of the comparison is incorrect because
the result of the ADDDIVMOD operation was not normalized.

Recommendations
Short term, add a call to normalize as suggested in the caption of figure 11.3. Doing so will
help ensure comparisons involving the results of ADDDIVMOD operations are correct.

Long term, take the following steps (which are also recommended for finding
TOB-TVMUP-15):

● Regularly test the code by fuzzing it. Fuzzing revealed the bug described here.

● Ensure that all arithmetic operations have a robust set of unit tests. It is possible
that better unit tests could have revealed this bug.

● Use an integer type that does not allow multiple representations for an integer. The
current type seems to be a common source of errors.

Trail of Bits 39 TVM Upgrade Security Assessment
CONFIDENTIAL

12. Use of deprecated cryptographic APIs

Severity: Informational Difficulty: High

Type: Patching Finding ID: TOB-TVMUP-12

Target: tdutils/td/utils/crypto.cpp

Description
The TON cryptographic API exposes unsafe and deprecated functions like
MD5 (figure 12.1).

782 void md5(Slice input, MutableSlice output) {
783 CHECK(output.size() >= MD5_DIGEST_LENGTH);
784 auto result = MD5(input.ubegin(), input.size(), output.ubegin());
785 CHECK(result == output.ubegin());
786 }

Figure 12.1: TON’s cryptographic utility library exposes the MD5 hash.
(tdutils/td/utils/crypto.cpp#782–786)

MD5 is no longer considered cryptographically secure and can be trivially collided.

This finding is of informational severity because this code does not appear to be used
anywhere in TON.

Exploit Scenario
A future TON developer notices the API and decides to use a deprecated function like MD5,
causing a security flaw.

Recommendations
Short term, remove the implementation of MD5 and any other deprecated cryptographic
APIs from TON.

Long term, document the purpose of all cryptographic functions in TON. Regularly perform
checks for unreachable code (e.g., in CI) and proactively remove dead code.

Trail of Bits 40 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/tdutils/td/utils/crypto.cpp#L782-L786

13. Bignum can segfault when converting to string or hex

Severity: Informational Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-TVMUP-13

Target: crypto/openssl/bignum.cpp

Description
The Bignum class is used throughout TON’s OpenSSL wrapper and cryptographic API. This
class defines two functions to convert Bignum values to decimal and hexadecimal strings:

233 std::string Bignum::to_str() const {
234 char* ptr = BN_bn2dec(val);
235 std::string z(ptr);
236 OPENSSL_free(ptr);
237 return z;
238 }
239
240 std::string Bignum::to_hex() const {
241 char* ptr = BN_bn2hex(val);
242 std::string z(ptr);
243 OPENSSL_free(ptr);
244 return z;
245 }

Figure 13.1: Two functions to convert Bignum values to strings
(crypto/openssl/bignum.cpp#233–245)

Note that on lines 234 and 241, the return values of BN_bn2dec and BN_bn2hex are not
checked. These functions will return nullptr if their argument—the underlying OpenSSL
big number val—is invalid. The pointer returned by these functions, ptr, is immediately
passed to the std::string constructor on lines 235 and 242. If the value of ptr is
nullptr, then the string constructor will throw a logic error and the program will segfault.

The severity of this finding is informational because the code in figure 13.1 appears to be
reachable only from test_ed25519_impl.

Exploit Scenario
An attacker creates a malicious contract that creates an invalid Bignum. When this value is
logged, the validators crash.

Recommendations
Short term, add a check to ensure that the return value from the BN_ functions is not null.

Trail of Bits 41 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/openssl/bignum.cpp#L233-L245
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/test/test-ed25519-crypto.cpp#L71

Long term, consider running CodeQL over the codebase regularly. CodeQL revealed this
bug. Running it regularly could reveal similar ones.

Trail of Bits 42 TVM Upgrade Security Assessment
CONFIDENTIAL

14. Risk of infinite loop during RaptorQ FEC

Severity: Undetermined Difficulty: Undetermined

Type: Denial of Service Finding ID: TOB-TVMUP-14

Target: tdfec/td/fec/raptorq/Rfc.h

Description
TON’s forward error correction (FEC) implementation has a templated convenience
function for iterating over an encoding’s rows:

61 template <class F>
62 void encoding_row_for_each(EncodingRow t, F &&f) const {
63 f(t.b);
64 for (uint16 j = 1; j < t.d; ++j) {
65 t.b = (t.b + t.a) % W;
66 f(t.b);
67 }
68
69 while (t.b1 >= P)
70 t.b1 = (t.b1 + t.a1) % P1;
71 f(W + t.b1);
72 for (uint16 j = 1; j < t.d1; ++j) {
73 t.b1 = (t.b1 + t.a1) % P1;
74 while (t.b1 >= P)
75 t.b1 = (t.b1 + t.a1) % P1;
76 f(W + t.b1);
77 }
78 }

Figure 14.1: A convenience function to iterate over an encoding row
(tdfec/td/fec/raptorq/Rfc.h#61–78)

Note that on line 64, the iterator, j, is a uint16; however, the invariant t.d is a uint32. If
t.d is greater than or equal to 216 (the maximum value representable with a uint16), then
j will overflow and wrap back to zero. This will result in an infinite loop.

The severity and difficulty of this finding are undetermined because it is unclear what the
maximum value of t.d (the LT degree) can be. A code comment suggests that it is bounded
above by 30, but there is no such bound explicitly specified in RFC 6330. If it is in fact
provable that t.d will never be greater than or equal to 216, then this finding would be of
informational severity.

Trail of Bits 43 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/tdfec/td/fec/raptorq/Rfc.h#L61-L78
https://datatracker.ietf.org/doc/html/rfc6330

Exploit Scenario
An attacker discovers a way to induce the LT degree to be greater than 216, causing the
victim’s node to enter an infinite loop.

Recommendations
Short term, change the loop iterators to be of type uint32.

Long term, confirm the necessity of using types narrower than 64 bits. In almost all cases,
using a 64-bit type on a 64-bit architecture will be more performant than using a narrower
type. The only motivation to use a narrower type would be to reduce memory usage of the
structs.

Trail of Bits 44 TVM Upgrade Security Assessment
CONFIDENTIAL

15. Missing to call to normalize in MULADDRSHIFT#MOD implementation

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TVMUP-15

Target: crypto/vm/arithops.cpp

Description
In TON, an integer can have multiple representations. BigInt’s normalize function puts
an integer into a canonical form. A call to normalize is missing from the implementation
of MULADDRSHIFT#MOD, which can cause subsequent comparisons to produce incorrect
results.

BigInt’s normalize function puts an integer into a canonical form, such as by ensuring
that the digits it stores internally are within certain bounds (see figure 11.1 in
TOB-TVMUP-11).

However, the implementation of MULADDRSHIFT#MOD lacks such a call (figure 15.1).

488 int exec_mulshrmod(VmState* st, unsigned args, int mode) {
...

495 unsigned d = (args >> 2) & 3;
...

523 switch (d) {
524 case 1:
525 tmp.rshift(z, round_mode).normalize();
526 stack.push_int_quiet(td::make_refint(tmp), mode & 1);
527 break;
528 case 3: {
529 typename td::BigInt256::DoubleInt tmp2{tmp};
530 tmp2.rshift(z, round_mode).normalize();
531 stack.push_int_quiet(td::make_refint(tmp2), mode & 1);
532 }
533 // fallthrough
534 case 2:
535 tmp.normalize().mod_pow2(z, round_mode).normalize();
536 stack.push_int_quiet(td::make_refint(tmp), mode & 1);
537 break;
538 }
539 return 0;
540 }

Figure 15.1: In the implementation of MULADDRSHIFT#MOD, the highlighted text should likely be
tmp2.normalize(). (crypto/vm/arithops.cpp#488–540)

Trail of Bits 45 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L488-L540

Without the call to normalize, a call to sgn in rshift_any (figure 15.2) can return the
wrong result.

1528 template <class Tr>
1529 bool AnyIntView<Tr>::rshift_any(int exponent, int round_mode) {
1530 if (exponent < 0) {
1531 return invalidate_bool();
1532 }
1533 if (!exponent) {
1534 return true;
1535 }
1536 if (exponent > size() * word_shift + word_bits - word_shift) {
1537 if (!round_mode) {
1538 *this = 0;
1539 } else if (round_mode < 0) {
1540 *this = (sgn() < 0 ? -1 : 0);
1541 } else {
1542 *this = (sgn() > 0 ? 1 : 0);
1543 }
1544 return true;
1545 }

...
1593 }

Figure 15.2: The rshift_any function, which is called by BigInt’s rshift function
(crypto/common/bigint.hpp#1528–1593)

The issue can be reproduced with the Fift code in figure 15.3.

{
=: ans-r =: ans-q
=: w =: y =: x
@' x @' y @' w
<b x{A9B0FF} s, b> <s 0 runvmx
.s
abort"Exitcode != 0"
@' ans-r <> abort"Incorrect r"
@' ans-q <> abort"Incorrect q"

} : test

5 40 -7840 -1
115792089237316195423570985008687907853269984665640564039457584007913129632296 test

Figure 15.3: This is the Fift code that reproduces the issue. The code errors with “Incorrect q”
because it expects the highlighted -1 to be 0.

Exploit Scenario
Alice, a TON developer, writes code that performs a computation using
MULADDRSHIFT#MOD and compares the result to some other value. The result of the
comparison is incorrect because the result of an intermediate computation in
MULADDRSHIFT#MOD was not normalized.

Trail of Bits 46 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/common/bigint.hpp#L1528-L1593

Recommendations
Short term, add a call to normalize as suggested in the caption of figure 15.1. Doing so will
help ensure comparisons involving the results of MULADDRSHIFT#MOD operations are
correct.

Long term, take the following steps (which are also recommended for finding
TOB-TVMUP-11):

● Regularly test the code by fuzzing it. Fuzzing revealed the bug described here.

● Ensure that all arithmetic operations have a robust set of unit tests. It is possible
that better unit tests could have revealed this bug.

● Use an integer type that does not allow multiple representations for an integer. The
current type seems to be a common source of errors.

Trail of Bits 47 TVM Upgrade Security Assessment
CONFIDENTIAL

16. BLS gas costs are inconsistent with specification

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TVMUP-16

Target: crypto/vm/tonops.cpp, TVM upgrade documentation

Description
The gas costs for various BLS operations do not match the costs indicated in the
specification. Improperly implemented gas costs could be used for griefing attacks. Such
discrepancies can also cause confusion for users.

As an example, the gas cost for BLS_G1_ADD is listed in the documentation as 3,959.
However, the gas cost that is actually applied for this operation is 3,934. The
bls_g1_add_sub_gas_price function adds 3,900 (figures 16.1 and 16.2) and the
additional 34 is from 10 per instruction plus 24 opcode bits times 1 per opcode bit (figure
16.3 and 16.4).

893 int exec_bls_g1_add(VmState* st) {
894 VM_LOG(st) << "execute BLS_G1_ADD";
895 Stack& stack = st->get_stack();
896 stack.check_underflow(2);
897 st->consume_gas(VmState::bls_g1_add_sub_gas_price);
898 bls::P1 b = slice_to_bls_p1(*stack.pop_cellslice());
899 bls::P1 a = slice_to_bls_p1(*stack.pop_cellslice());
900 stack.push_cellslice(bls_to_slice(bls::g1_add(a, b).as_slice()));
901 return 0;
902 }

Figure 16.1: The implementation of BLS_G1_ADD
(crypto/vm/tonops.cpp#893–902)

140 bls_g1_add_sub_gas_price = 3900,

Figure 16.2: The gas cost implemented for BLS_G1_ADD
(crypto/vm/vm.h#140)

172 int OpcodeInstrSimple::dispatch(VmState* st, CellSlice& cs, unsigned opcode,
unsigned bits) const {
173 st->consume_gas(gas_per_instr + opc_bits * gas_per_bit);
174 if (bits < opc_bits) {
175 throw VmError{Excno::inv_opcode, "invalid or too short opcode", opcode +
(bits << max_opcode_bits)};
176 }

Trail of Bits 48 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L893-L902
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/vm.h#L140

177 cs.advance(opc_bits);
178 return exec_instr(st, cs, opcode >> (max_opcode_bits - opc_bits),
opc_bits);
179 }

Figure 16.3: The gas consumption for a “simple” instruction
(crypto/vm/opctable.cpp#172–179)

43 static constexpr unsigned gas_per_instr = 10, gas_per_bit = 1;

Figure 16.4: The gas_per_instr and gas_per_bit values
(crypto/vm/opctable.h#43)

As mentioned under Coverage Limitations, we were not able to exhaustively check all
instructions’ gas costs.

Exploit Scenario
Alice, a TON developer, writes code that uses the BLS_G1_ADD instruction. Alice’s code
does not consume the amount of gas she expects. Alice wastes time and effort trying to
understand why.

Recommendations
Short term, ensure that the BLS operations’ implemented gas costs match those indicated
in their specifications. Doing so will help prevent griefing attacks and will reduce the
likelihood of users becoming confused.

Long term, add tests to verify that the TVM operations’ implemented gas costs match those
indicated in their specifications. Doing so will help prevent such problems from arising
again.

Trail of Bits 49 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/opctable.cpp#L172-L179
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/opctable.h#L43

17. Use of libsodiummight stall the process

Severity: Low Difficulty: High

Type: Timing Finding ID: TOB-TVMUP-17

Target: crypto/vm/tonops.cpp

Description
The documentation for libsodium’s sodium_init function includes a section describing
how initialization of the library might stall on Linux. The sodium_init function is invoked
during the execution of the Ristretto255 instructions in the TVM.

Exploit Scenario
libsodium stalls during initialization, preventing a validator node from completing before
the timeout. The validator is penalized for failing to complete on time.

Recommendations
Short term, modify the relevant code so that sodium_init is invoked when the TVM boots
to ensure that initialization of libsodium is complete before it is used in a time-sensitive
setting.

Long term, ensure that prerequisites for and behavior of introduced dependencies are
carefully scrutinized before being implemented. Furthermore, ensure that there is a
process for monitoring dependencies over time to prevent unexpected failures as
dependencies change.

Trail of Bits 50 TVM Upgrade Security Assessment
CONFIDENTIAL

https://libsodium.gitbook.io/doc/usage#sodium_init-stalling-on-linux
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L631C5-L649

18. RIST255_MUL uses nonstandard method for handling errors

Severity: High Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-TVMUP-18

Target: crypto/vm/tonops.cpp

Description
The documentation for the crypto_scalarmult_ristretto255 function states that zero
is the only return value that indicates success. TON's invocation of the function can be
found in the exec_ristretto255_mul function and the relevant excerpt is shown in
figure 18.1. When crypto_scalarmult_ristretto255 fails to compute the scalar
multiplication and returns with an error, the code checks whether the output buffer rb has
been modified and, if so, continues to the success branch instead of returning an error.

722 unsigned char xb[32], nb[32], rb[32];
723 memset(rb, 255, sizeof(rb));
724 CHECK(sodium_init() >= 0);
725 if (!x->export_bytes(xb, 32, false) || !export_bytes_little(n, nb) ||
crypto_scalarmult_ristretto255(rb, nb, xb)) {
726 if (std::all_of(rb, rb + 32, [](unsigned char c) { return c == 255; })) {
727 if (quiet) {
728 stack.push_bool(false);
729 return 0;
730 }
731 throw VmError{Excno::range_chk, "invalid x or n"};
732 }
733 }
734 td::RefInt256 r{true};

Figure 18.1: An excerpt of exec_ristretto255_mul showing unexpected error handling
behavior (crypto/vm/tonops.cpp#722–734)

The difficulty of this finding is undetermined because it is unclear under what conditions
the Ristretto implementation will modify the buffer.

Exploit Scenario
The implementation of crypto_scalarmult_ristretto255 is altered in a way that
causes it to modify the output buffer before returning an error code. This causes the if
statement on line 726 to fail and bypass the error exit, thereby leading to a seemingly
successful output. Because not all validators necessarily have the same version of the
libsodium dependency, there is a risk that some will fail and some will succeed,
potentially causing a fork of the chain.

Trail of Bits 51 TVM Upgrade Security Assessment
CONFIDENTIAL

https://libsodium.gitbook.io/doc/advanced/point-arithmetic/ristretto#scalar-multiplication
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L715-L741
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L722-L734

Recommendations
Short term, remove the additional check to prevent failed multiplication operations from
indicating success.

Long term, require unit tests, having both positive and negative tests, to accompany every
feature that is introduced.

Trail of Bits 52 TVM Upgrade Security Assessment
CONFIDENTIAL

19. Cell slices for public keys and signatures can have excess data

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-TVMUP-19

Target: crypto/vm/tonops.cpp

Description
Figure 19.1 shows the function used to convert a generic CellSlice into the P1 type,
which represents public keys in the TON BLS12-381 implementation. The P1 type is a
BitArray of 384 bits. The prefetch_bytes function has a check to ensure that the
CellSlice holds at least the length of the destination slice (p1 in figure 19.1). However,
there is no check to ensure that the CellSlice is exactly 384 bits. This can lead to
incompatibility issues between the TON blockchain implementation and other external
entities. The same issue is present in the code that converts cell slices to the P2, FP, and
FP2 types—all part of the BLS12-381 integration.

776 static bls::P1 slice_to_bls_p1(const CellSlice& cs) {
777 bls::P1 p1;
778 if (!cs.prefetch_bytes(p1.as_slice())) {
779 throw VmError{Excno::cell_und, PSTRING() << "slice must contain at least
" << bls::P1_SIZE << " bytes"};
780 }
781 return p1;
782 }

Figure 19.1: The function that converts a CellSlice to P1
(crypto/vm/tonops.cpp#776–782)

Exploit Scenario
CellSlices used for successful BLS12-381 operations on the TON blockchain are
exported and used on a separate blockchain with stricter validation, causing the operations
to fail and causing incompatibility issues.

Recommendations
Short term, implement a check in the slice_to_bls_{p1,p2,fp,fp2} functions that
ensures the source CellSlice is of the exact expected length.

Long term, ensure that bounds checks are as tight as possible and include fuzz testing to
ensure resiliency against data padding attacks.

Trail of Bits 53 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L776-L782

20. Divergent behavior among BLS instructions when n is 0

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-TVMUP-20

Target: crypto/vm/tonops.cpp

Description
The instructions BLS_G1_MULTIEXP, BLS_G2_MULTIEXP, BLS_AGGREGATE,
BLS_FASTAGGREGATEVERIFY, BLS_AGGREGATEVERIFY, and BLS_PAIRING all operate on
multiple signatures, keys, or pairs of them. The stack value n is used to represent the
number of values to process.

For the special case in which n is 0, these functions have divergent behavior:

● BLS_AGGREGATE throws an exception.

● BLS_FASTAGGREGATEVERIFY, BLS_AGGREGATEVERIFY, and BLS_PAIRING return
False.

● BLS_G1_MULTIEXP and BLS_G2_MULTIEXP return the zero point.

Exploit Scenario
Alice, a TON developer who has previously used BLS_AGGREGATE, incorrectly assumes an
exception is thrown when n is 0 when calling BLS_G1_MULTIEXP, but instead, the zero
point is returned. As a result, the smart contract code continues executing even though it
should not, and funds are lost.

Recommendations
Short term, either modify these instructions so that they behave the same way when n is 0
or clarify the documentation concerning each instruction’s expected behavior in this case.

Long term, use fuzz testing to explore system behavior under various scenarios.
Furthermore, when introducing new instructions, consider studying already implemented,
related instructions to align behavior with existing code.

Trail of Bits 54 TVM Upgrade Security Assessment
CONFIDENTIAL

21. Uninitialized data read when downcast_call fails

Severity: High Difficulty: Undetermined

Type: Undefined Behavior Finding ID: TOB-TVMUP-21

Target: fec/fec.cpp

Description
The code in figure 21.1 uses the downcast_call and overloaded APIs. The lambda that is
invoked will assign values to the previously uninitialized variables data_size_int,
symbol_size_int, and symbols_count_int. The implementation of downcast_call for
the fec_Type is shown in figure 21.2. From figure 21.2, it is evident that the default branch
will not invoke the function that assigns the data_size_int, symbol_size_int, and
symbols_count_int values. Should this branch be taken, line 108 would cause a read of
the uninitialized value data_size_int, which is undefined behavior. Note that the
variables used on lines 109 and 110 are also uninitialized.

101 td::Result<FecType> FecType::create(tl_object_ptr<ton_api::fec_Type> obj) {
102 td::int32 data_size_int, symbol_size_int, symbols_count_int;
103 ton_api::downcast_call(*obj, td::overloaded([&](const auto &obj) {
104 data_size_int = obj.data_size_;
105 symbol_size_int = obj.symbol_size_;
106 symbols_count_int = obj.symbols_count_;
107 }));
108 TRY_RESULT(data_size, td::narrow_cast_safe<size_t>(data_size_int));
109 TRY_RESULT(symbol_size, td::narrow_cast_safe<size_t>(symbol_size_int));
110 TRY_RESULT(symbols_count, td::narrow_cast_safe<size_t>(symbols_count_int));

Figure 21.1: Using downcast_call without checking whether the function call
happened can cause a read of uninitialized values. (fec/fec.cpp#101–110)

1 /**
2 * Calls specified function object with the specified object downcasted to the

most-derived type.
3 * \param[in] obj Object to pass as an argument to the function object.
4 * \param[in] func Function object to which the object will be passed.
5 * \returns whether function object call has happened. Should always return

true for correct parameters.
6 */
7 template <class T>
8 bool downcast_call(fec_Type &obj, const T &func) {
9 switch (obj.get_id()) {
10 case fec_raptorQ::ID:
11 func(static_cast<fec_raptorQ &>(obj));
12 return true;

Trail of Bits 55 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/fec/fec.cpp#L101-L110

13 case fec_roundRobin::ID:
14 func(static_cast<fec_roundRobin &>(obj));
15 return true;
16 case fec_online::ID:
17 func(static_cast<fec_online &>(obj));
18 return true;
19 default:
20 return false;
21 }
22 }

Figure 21.2: The downcast_call implementation for type fec_Type
(tl/generate/auto/tl/ton_api.hpp)

Exploit Scenario
An adversarial TON user identifies a scenario in which obj can be made to hold a value
with an ID that is not recognized by downcast_call. This causes data_size_int to be
uninitialized and later read, invoking undefined behavior and leading to a crash or other
severe outcome.

Recommendations
Short term, implement a check of the return value of downcast_call that will propagate a
failed call to the td::Result<FecType> to indicate failure.

Long term, mark the return value of downcast_call as a nodiscard to indicate to
developers that they should account for cases in which func is not invoked. Furthermore,
run static code analysis in CI to prevent developers from being able to introduce
uninitialized reads that can be automatically detected.

Trail of Bits 56 TVM Upgrade Security Assessment
CONFIDENTIAL

https://en.cppreference.com/w/cpp/language/attributes/nodiscard

22. Register c7 tuple element “previous blocks” can be null

Severity: Undetermined Difficulty: Undetermined

Type: Undefined Behavior Finding ID: TOB-TVMUP-22

Target: crypto/block/transaction.cpp, documentation

Description
The code in figure 22.1 is used to initialize the tuple residing in register c7. The
documentation states that this tuple includes an element with information about previous
blocks.

However, based on the implementation, this tuple element might be an empty stack entry.

954 tuple.push_back(cfg.prev_blocks_info.not_null() ?
vm::StackEntry(cfg.prev_blocks_info) : vm::StackEntry());

Figure 22.1: The initialization of the c7 register, with tuple index 13 holding information about
previous blocks (crypto/block/transaction.cpp#954)

Exploit Scenario
Alice, a TON developer, relies on information about previous blocks but is not aware that
the code might return an empty stack entry, causing unexpected behavior in her code,
potentially leading to the loss of funds.

Recommendations
Short term, document that the information about previous blocks is not necessarily
available and what to expect when it is not.

Long term, implement test cases and ensure that they match the documentation to
prevent users from getting unexpected values that are not stated in the documentation.

Trail of Bits 57 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb#c7
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/block/transaction.cpp#L954

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 58 TVM Upgrade Security Assessment
CONFIDENTIAL

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 59 TVM Upgrade Security Assessment
CONFIDENTIAL

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 60 TVM Upgrade Security Assessment
CONFIDENTIAL

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 61 TVM Upgrade Security Assessment
CONFIDENTIAL

C. Data Used for TOB-TVMUP-2

This appendix contains the raw data used to calculate the percentage of lines in the
crypto subdirectory’s .cpp files that have line comments, as described in finding
TOB-TVMUP-2. Specifically, table C.1 contains the number of lines matching the regular
expression //.*, as well as the total number of lines, for each file ending in .cpp in the
crypto subdirectory.

Source File Lines
Matching

//.*

Total Lines Percentage

Ed25519.cpp 5 402 1.24%

block/Binlog.cpp 11 493 2.23%

block/adjust-block.cpp 1 208 0.48%

block/block-auto.cpp 638 25,812 2.47%

block/block-db.cpp 25 843 2.97%

block/block-parse.cpp 563 2,328 24.18%

block/block.cpp 109 2,300 4.74%

block/check-proof.cpp 18 666 2.70%

block/create-state.cpp 86 949 9.06%

block/dump-block.cpp 4 351 1.14%

block/mc-config.cpp 97 2,261 4.29%

block/output-queue-merger.cpp 3 221 1.36%

block/test-block.cpp 2 248 0.81%

Trail of Bits 62 TVM Upgrade Security Assessment
CONFIDENTIAL

block/test-weight-distr.cpp 12 199 6.03%

block/transaction.cpp 389 2,809 13.85%

common/bigexp.cpp 10 261 3.83%

common/bigint.cpp 3 41 7.32%

common/bitstring.cpp 20 668 2.99%

common/refcnt.cpp 3 60 5.00%

common/refint.cpp 11 379 2.90%

common/util.cpp 2 236 0.85%

ellcurve/Ed25519.cpp 11 280 3.93%

ellcurve/Fp25519.cpp 2 33 6.06%

ellcurve/Montgomery.cpp 5 138 3.62%

ellcurve/TwEdwards.cpp 12 255 4.71%

ellcurve/p256.cpp 2 91 2.20%

ellcurve/secp256k1.cpp 1 42 2.38%

fift/Continuation.cpp 55 535 10.28%

fift/Dictionary.cpp 8 128 6.25%

fift/Fift.cpp 2 82 2.44%

fift/HashMap.cpp 2 371 0.54%

Trail of Bits 63 TVM Upgrade Security Assessment
CONFIDENTIAL

fift/IntCtx.cpp 3 306 0.98%

fift/SourceLookup.cpp 2 89 2.25%

fift/fift-main.cpp 3 227 1.32%

fift/utils.cpp 3 223 1.35%

fift/words.cpp 98 3,545 2.76%

func/abscode.cpp 6 528 1.14%

func/analyzer.cpp 41 916 4.48%

func/asmops.cpp 2 375 0.53%

func/builtins.cpp 42 1,265 3.32%

func/codegen.cpp 21 912 2.30%

func/func-main.cpp 1 129 0.78%

func/func.cpp 4 261 1.53%

func/gen-abscode.cpp 7 451 1.55%

func/keywords.cpp 4 137 2.92%

func/optimize.cpp 9 654 1.38%

func/parse-func.cpp 36 1,818 1.98%

func/stack-transform.cpp 77 1,056 7.29%

func/unify-types.cpp 6 431 1.39%

Trail of Bits 64 TVM Upgrade Security Assessment
CONFIDENTIAL

funcfiftlib/funcfiftlib.cpp 13 173 7.51%

keccak/keccak.cpp 2 473 0.42%

openssl/bignum.cpp 4 261 1.53%

openssl/rand.cpp 7 122 5.74%

openssl/residue.cpp 5 176 2.84%

parser/lexer.cpp 4 338 1.18%

parser/srcread.cpp 3 230 1.30%

parser/symtable.cpp 5 181 2.76%

smartcont/auto/config-code.cpp 1 1 100.00%

smartcont/auto/dns-auto-code.cpp 0 1 0.00%

smartcont/auto/dns-manual-code.cpp 1 1 100.00%

smartcont/auto/elector-code.cpp 1 1 100.00%

smartcont/auto/highload-wallet-cod
e.cpp

1 1 100.00%

smartcont/auto/highload-wallet-v2-
code.cpp

1 1 100.00%

smartcont/auto/multisig-code.cpp 1 1 100.00%

smartcont/auto/payment-channel-cod
e.cpp

0 1 0.00%

smartcont/auto/pow-testgiver-code.
cpp

1 1 100.00%

Trail of Bits 65 TVM Upgrade Security Assessment
CONFIDENTIAL

smartcont/auto/restricted-wallet-c
ode.cpp

1 1 100.00%

smartcont/auto/restricted-wallet2-
code.cpp

0 1 0.00%

smartcont/auto/restricted-wallet3-
code.cpp

0 1 0.00%

smartcont/auto/simple-wallet-code.
cpp

1 1 100.00%

smartcont/auto/simple-wallet-ext-c
ode.cpp

0 1 0.00%

smartcont/auto/wallet-code.cpp 1 1 100.00%

smartcont/auto/wallet3-code.cpp 0 1 0.00%

smc-envelope/GenericAccount.cpp 4 163 2.45%

smc-envelope/HighloadWallet.cpp 2 90 2.22%

smc-envelope/HighloadWalletV2.cpp 2 107 1.87%

smc-envelope/ManualDns.cpp 38 634 5.99%

smc-envelope/MultisigWallet.cpp 2 198 1.01%

smc-envelope/PaymentChannel.cpp 4 291 1.37%

smc-envelope/SmartContract.cpp 37 351 10.54%

smc-envelope/SmartContractCode.cpp 16 192 8.33%

smc-envelope/TestGiver.cpp 5 66 7.58%

Trail of Bits 66 TVM Upgrade Security Assessment
CONFIDENTIAL

smc-envelope/TestWallet.cpp 3 106 2.83%

smc-envelope/Wallet.cpp 4 110 3.64%

smc-envelope/WalletInterface.cpp 2 80 2.50%

smc-envelope/WalletV3.cpp 2 86 2.33%

test/Ed25519.cpp 17 219 7.76%

test/fift.cpp 1 165 0.61%

test/modbigint.cpp 12 1,074 1.12%

test/test-bigint.cpp 95 876 10.84%

test/test-cells.cpp 12 656 1.83%

test/test-db.cpp 68 2,096 3.24%

test/test-ed25519-crypto.cpp 22 314 7.01%

test/test-smartcont.cpp 85 1,661 5.12%

test/vm.cpp 22 450 4.89%

tl/tlbc-gen-cpp.cpp 103 3,465 2.97%

tl/tlbc.cpp 85 3,167 2.68%

tl/tlblib.cpp 3 387 0.78%

util/Miner.cpp 3 129 2.33%

util/pow-miner.cpp 9 245 3.67%

Trail of Bits 67 TVM Upgrade Security Assessment
CONFIDENTIAL

vm/Hasher.cpp 1 148 0.68%

vm/arithops.cpp 8 1,052 0.76%

vm/atom.cpp 2 97 2.06%

vm/bls.cpp 5 334 1.50%

vm/boc.cpp 65 1,217 5.34%

vm/cellops.cpp 3 1,458 0.21%

vm/cells/Cell.cpp 2 59 3.39%

vm/cells/CellBuilder.cpp 2 628 0.32%

vm/cells/CellHash.cpp 2 28 7.14%

vm/cells/CellSlice.cpp 15 1,132 1.33%

vm/cells/CellString.cpp 2 212 0.94%

vm/cells/CellTraits.cpp 2 45 4.44%

vm/cells/CellUsageTree.cpp 8 136 5.88%

vm/cells/DataCell.cpp 14 368 3.80%

vm/cells/LevelMask.cpp 3 32 9.38%

vm/cells/MerkleProof.cpp 6 421 1.43%

vm/cells/MerkleUpdate.cpp 41 513 7.99%

vm/continuation.cpp 52 662 7.85%

Trail of Bits 68 TVM Upgrade Security Assessment
CONFIDENTIAL

vm/contops.cpp 17 1,227 1.39%

vm/cp0.cpp 11 51 21.57%

vm/db/BlobView.cpp 6 181 3.31%

vm/db/CellStorage.cpp 5 163 3.07%

vm/db/DynamicBagOfCellsDb.cpp 20 564 3.55%

vm/db/StaticBagOfCellsDb.cpp 20 544 3.68%

vm/db/TonDb.cpp 22 325 6.77%

vm/debugops.cpp 5 162 3.09%

vm/dict.cpp 284 2,954 9.61%

vm/dictops.cpp 3 822 0.36%

vm/dispatch.cpp 3 71 4.23%

vm/large-boc-serializer.cpp 14 412 3.40%

vm/memo.cpp 2 33 6.06%

vm/opctable.cpp 4 470 0.85%–

vm/stack.cpp 46 1,004 4.58%

vm/stackops.cpp 5 589 0.85%

vm/tonops.cpp 80 1,847 4.33%

vm/tupleops.cpp 2 402 0.50%

Trail of Bits 69 TVM Upgrade Security Assessment
CONFIDENTIAL

vm/utils.cpp 3 152 1.97%

vm/vm.cpp 42 773 5.43%

Total 4,015 97,649 4.11%

Table C.1: The raw data used to perform the calculations referenced in finding TOB-TVMUP-2

Trail of Bits 70 TVM Upgrade Security Assessment
CONFIDENTIAL

D. Non-Security-Related Findings

The following recommendations are not associated with specific vulnerabilities. However,
implementing them may enhance code readability and may prevent the introduction of
vulnerabilities in the future.

● Dead initialization in lexer.cpp
The begin variable is never used after it is assigned. Consider removing the
assignment or the entire statement if there are no side effects in src.get_ptr().

251 if (is_multiline_quote(src.get_ptr(), src.get_end_ptr())) {
252 src.advance(multiline_quote.size());
253 const char* begin = src.get_ptr();
254 const char* end = nullptr;
255 SrcLocation here = src.here();
256 std::string body;
257 while (!src.is_eof()) {

Figure D.1: The dead initialization on line 253 (crypto/parser/lexer.cpp#251–257)

● Erroneous assignment of status to OK (or unclear code)
In the code in figure D.2, if the true branch is taken, status is “moved from.” In this
particular case, the move will cause status to be reset to OK. Following the if
body, status is returned, causing the function to return OK even though status
was an error. Either the function returns an incorrect status, in which case this is a
bug, or the code could be improved to clarify that this is the intended behavior.
Consider using explicit function names that clarify the code’s behavior for cases in
which values are used without being reset in any way after move operations.

107 if (status.is_error() && !UdpSocketFd::is_critical_read_error(status)) {
108 queue.push(UdpMessage{{}, {}, std::move(status)});
109 }

110 return status;

Figure D.2: The returning of status, which is used after the move operation
(tdutils/td/utils/BufferedUdp.h#107–110)

● Incorrect error message due to use of JSON value after move
In the code in figure D.3, the variable from is “moved from” on line 111. If the result
of status.is_ok() on line 112 is not true, from will be used after the move. The
value of from will be reset to the Type::Null type, resulting in an incorrect error
message. Consider having the type extracted before the move from the variable
from.

111 auto status = from_json(x, std::move(from));

Trail of Bits 71 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/parser/lexer.cpp#L251-L257
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/tdutils/td/utils/BufferedUdp.h#L107-L110

112 if (status.is_ok()) {
113 to = x != 0;
114 return Status::OK();
115 }

116 return Status::Error(PSLICE() << "Expected bool, got " << from.type());

Figure D.3: The from variable is used after the move operation, causing an incorrect error
printout. (tl/tl/tl_json.h#111–116)

● Redundant stores to var0 in generated code
The following is one example of generated code in
tl/generate/auto/tl/lite_api.cpp. The store methods contain a redundant
var0 variable, which is stored to but not used outside of the store expression.
Consider removing the generation of the code that stores to var0 and, in this
example, use mode_ directly.

1 void liteServer_validatorStats::store(td::TlStorerUnsafe &s) const {
2 (void)sizeof(s);
3 std::int32_t var0;
4 TlStoreBinary::store((var0 = mode_), s);
5 TlStoreObject::store(id_, s);
6 TlStoreBinary::store(count_, s);
7 TlStoreBool::store(complete_, s);
8 TlStoreString::store(state_proof_, s);
9 TlStoreString::store(data_proof_, s);
10 }

Figure D.4: The redundant store to var0, which is never read outside of the expression
(tl/generate/auto/tl/lite_api.cpp)

● Dead assignments
The following are assignments that have no impact on the behavior of the program
(i.e., they are dead). Consider removing the assignments, as they have no impact on
the program behavior. Furthermore, consider running static code analysis to
automatically detect dead assignments and keep the codebase tidy.

○ The assignment to op on line 2255 in crypto/tl/tlbc.cpp

○ The assignment to op on line 2259 in crypto/tl/tlbc.cpp

○ The assignment to alive_end on line 403 in storage/test/storage.cpp

○ The assignment to ok on line 521 in storage/test/storage.cpp

○ The assignment to file_size on line 223 in
tddb/td/db/utils/BlobView.cpp

Trail of Bits 72 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/tl/tl/tl_json.h#L111-L116
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/tl/tlbc.cpp#L2255
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/tl/tlbc.cpp#L2259
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/storage/test/storage.cpp#L403
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/storage/test/storage.cpp#L521
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/tddb/td/db/utils/BlobView.cpp#L223

○ The assignment to prev_skip on line 162 in
crypto/tl/tlbc-gen-cpp.cpp

● Use of non-nullable pointer rather than reference
The code excerpt in figure D.5 includes a parameter named st, which is a pointer
type. However, the code does not check to ensure that st is not null. Either the
check is missing and this code is susceptible to undefined behavior, or the author
knows that st cannot be null. If the latter case is correct, consider making the st
variable a reference to convey that fact to the reader.

609 int exec_ristretto255_from_hash(VmState* st) {
610 VM_LOG(st) << "execute RIST255_FROMHASH";
611 Stack& stack = st->get_stack();
612 stack.check_underflow(2);

Figure D.5: The st variable is assumed not to be null and could have been a reference.
(crypto/vm/tonops.cpp#609–612)

● Superfluous std::max call in exec_bls_aggregate
In the code in figure D.6, the call to pop_smallint_range on line 847 guarantees
that n is greater than or equal to 1. Furthermore, the gas prices are positive, so the
std::max call is not needed because the cost will always be greater than zero.
Consider simplifying the expression to improve the code’s readability.

846 Stack& stack = st->get_stack();
847 int n = stack.pop_smallint_range(stack.depth() - 1, 1);
848 st->consume_gas(
849 std::max(0LL, VmState::bls_aggregate_base_gas_price + (long long)n *
VmState::bls_aggregate_element_gas_price));
850 std::vector<bls::P2> sigs(n);

Figure D.6: A superfluous std::max call when arguments are always greater than zero
(crypto/vm/tonops.cpp#846–850)

● Allocation of 64 bytes for a curve point occupying 32 bytes in
exec_ristretto255_validate
The code in figure D.7 converts a TVM integer into a curve point for use with
ristretto255. The point representation for ristretto255 in libsodium
requires a 32-byte buffer. The exec_ristretto255_validate function allocates
64 bytes for the curve point. Although this will function correctly, we recommend
changing the size to 32 bytes to prevent future issues.

634 auto x = stack.pop_int();
635 st->consume_gas(VmState::rist255_validate_gas_price);
636 unsigned char xb[64];
637 CHECK(sodium_init() >= 0);

Trail of Bits 73 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/tl/tlbc-gen-cpp.cpp#L162
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L609-L612
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L846-L850

638 if (!x->export_bytes(xb, 32, false) ||
!crypto_core_ristretto255_is_valid_point(xb)) {

Figure D.7: The excess allocation for a curve point(crypto/vm/tonops.cpp#634–638)

● Reference to nonexistent instruction SETLIBRARY in documentation
The TVM upgrade documentation refers to an instruction called SETLIBRARY that
has been altered to accept additional values for mode. However, there is no
instruction called SETLIBRARY implemented in the codebase; the SETLIBCODE and
CHANGELIB operations are likely the intended subjects of this documentation. The
upgrade documentation further states that SETLIBRARY will not work if +2 is used.
We did not find any evidence of that. The values we deem acceptable for mode
when used in these instructions are 0, 1, 2, 16, 17 and 18. Consider updating the
documentation or code to prevent any confusion.

● Missing n stack argument for several BLS instructions
The documentation for BLS_FASTAGGREGATEVERIFY, BLS_G1_MULTIEXP, and
BLS_G2_MULTIEXP is missing the n stack argument indicating the number of keys,
signatures, or pairs of keys and signatures to process.

● Use of C-style casts
C-style casts are used in places where C++-style casts (e.g., static_cast,
reinterpret_cast, and const_cast) could be used. An example appears in
figure D.8. C++-style casts have the advantage that they are restricted in terms of
the types they can convert, and those restrictions are enforced at compile time.

124 void bits_memcpy(unsigned char* to, int to_offs, const unsigned char* from,
int from_offs, std::size_t bit_count) {

...
133 int sz = (int)bit_count;

Figure D.8: An example of code using a C-style cast where a C++-style cast could be used
(crypto/common/bitstring.cpp#124–133)

● Unused argument
The preload_fift argument in figure D.9 is unused. The argument can be
removed if it is not necessary.

36 td::Status run_fift(std::string name, bool expect_error = false, bool
preload_fift = true) {
37 auto res = fift::mem_run_fift(load_test(name));
38 if (expect_error) {
39 res.ensure_error();
40 return td::Status::OK();
41 }
42 res.ensure();
43 REGRESSION_VERIFY(res.ok().output);

Trail of Bits 74 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L634-L638
https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb#sending-messages
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L1779-L1786
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/tonops.cpp#L1803-L1810
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/common/bitstring.cpp#L124-L133

44 return td::Status::OK();
45 }

Figure D.9: The run_fift function, which has the unused preload_fift argument
(crypto/test/fift.cpp#36–45)

● Unnamed constants
Several functions in bigint.hpp take a round_mode argument that is expected to
hold -1 (floor), 0 (round), or 1 (ceiling). An example appears in figure D.10. The code
would be more clear if the round_mode arguments were an enum type rather than
an int.

1278 template <class Tr>
1279 bool AnyIntView<Tr>::mod_div_any(const AnyIntView<Tr>& yp, AnyIntView<Tr>&
quot, int round_mode) {

...
1290 if (!round_mode) {
1291 if ((yv > 0 && rem * 2 >= yv) || (yv < 0 && rem * 2 <= yv)) {
1292 rem -= yv;
1293 digits[0]++;
1294 }
1295 } else if (round_mode > 0 && rem) {
1296 rem -= yv;
1297 digits[0]++;
1298 }

Figure D.10: An example function in bigint.hpp with a round_mode argument
(crypto/common/bigint.hpp#1278–1298)

● Inconsistently assigned round_mode variables
As explained in the previous bullet point, several functions in bigint.hpp take a
round_mode argument that is expected to be -1, 0, or 1. In many cases, those
arguments are fed from round_mode variables assigned in arithops.cpp.
However, arithops.cpp assigns to the round_mode variables inconsistently (e.g.,
figures D.11 and D.12). Inconsistent assignments to round_mode variables increase
the risk of confusion.

267 int round_mode = (int)(args & 3) - 1;

Figure D.11: One example assignment to a round_mode variable in arithops.cpp
(crypto/vm/arithops.cpp#267)

310 int round_mode = (int)(args & 3);

Figure D.12: Another example assignment to a round_mode variable in arithops.cpp
(crypto/vm/arithops.cpp#310)

Trail of Bits 75 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/test/fift.cpp#L36-L45
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/common/bigint.hpp
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/common/bigint.hpp#L1278-L1298
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L267
https://github.com/ton-blockchain/ton/blob/6074702d059fee2b9456e47c294693447ca222ef/crypto/vm/arithops.cpp#L310

● Typos in TVM upgrade documentation
The TVM upgrade documentation contains the following two typographical errors:

○ In the descriptions of BLS_G1_MULTIEXP and BLS_G2_MULTIEXP, the text
“and scalars n_i” should be “and scalars s_i”.

○ In the description of BLS_AGGREGATEVERIFY, the text “kay-message pairs”
should be “key-message pairs”.

Trail of Bits 76 TVM Upgrade Security Assessment
CONFIDENTIAL

https://gist.github.com/EmelyanenkoK/d3688742ee3b207719b00fd281d1a8eb

E. Keccak Fuzzing Code

Figure E.1 contains the code used to fuzz the TVM’s Keccak-512 implementation. A slight
modification was used to fuzz the Keccak-256 implementation.

The code in figure E.1 works roughly as follows. It reads a set of sequences from standard
input. Each sequence is expected to consist of the following:

● A single byte, meant to represent a number of bits

● ceiling(length / 8) many bytes, where length is the number of bits (the byte
mentioned in the point above)

The sequences are hashed using the TVM’s Keccak implementation. The sequences are
similarly hashed using a slight variant of the SHA-3 reference implementation (see below).
Finally, the results returned by the two implementations are compared. If the results differ,
the program aborts.

Note that changes are needed to convert a SHA-3 implementation to Keccak. The changes
required for the SHA-3 reference implementation appear in figure E.2.

AFLplusplus was the fuzzing engine used to run the code in figure E.1. The code was run
with a trivial (essentially meaningless) initial corpus.

1 #include <err.h>
2 #include <unistd.h>
3
4 #include "vm/Hasher.h"
5 #include "vm/excno.hpp"
6
7 extern "C" {
8 #include "third-party/XKCP/bin/reference/libXKCP.a.headers/KeccakHash.h"
9 }
10
11 using namespace vm;
12
13 #define div_up(x, y) (((x) + (y)-1) / (y))
14
15 const size_t BUF_SIZE = 8192;
16 // const size_t HASH_SIZE = 32;
17 const size_t HASH_SIZE = 64;
18
19 const uint8_t *ton_keccak(const uint8_t *buf, size_t size);
20 const uint8_t *xkcp_keccak(const uint8_t *buf, size_t size);
21 void dump(const char *label, const uint8_t *buf, size_t size);
22
23 int main() {

Trail of Bits 77 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/XKCP/XKCP
https://github.com/AFLplusplus/AFLplusplus

24 try {
25 uint8_t buf[BUF_SIZE];
26 ssize_t size = read(STDIN_FILENO, buf, sizeof(buf));
27 if (size < 0) {
28 err(EXIT_FAILURE, "read");
29 }
30
31 const uint8_t *ton_hash = ton_keccak(buf, size);
32 const uint8_t *xkcp_hash = xkcp_keccak(buf, size);
33
34 dump(" ton", ton_hash, HASH_SIZE);
35 dump("xkcp", xkcp_hash, HASH_SIZE);
36
37 assert(memcmp(ton_hash, xkcp_hash, HASH_SIZE) == 0);
38 } catch (VmError &err) {
39 printf("%s\n", err.get_msg());
40 throw;
41 }
42
43 return 0;
44 }
45
46 template <typename F>
47 void consume_with(const uint8_t *buf, size_t size, F f) {
48 const uint8_t *const end = buf + size;
49 const uint8_t *p = buf;
50 size_t bits_consumed = 0;
51 while (p + 1 <= end && *p != 0 && p + 1 + div_up(*p, 8) <= end) {
52 const size_t n_bytes = div_up(*p, 8);
53 dump("p", p, 1 + n_bytes);
54 // Uncomment the next check to restrict fuzzing to whole bytes only.
55 /* if (*p % 8 != 0) {
56 exit(0);
57 } */
58 f(p + 1, *p);
59 bits_consumed += *p;
60 p += 1 + n_bytes;
61 }
62 if (bits_consumed % 8 != 0) {
63 const uint8_t x = 0;
64 f(&x, 8 - (bits_consumed % 8));
65 }
66 }
67
68 const uint8_t *ton_keccak(const uint8_t *buf, size_t size) {
69 // Hasher hasher(Hasher::KECCAK256);
70 Hasher hasher(Hasher::KECCAK512);
71
72 consume_with(buf, size, [&hasher](const uint8_t *x, size_t y) {
hasher.append(x, y); });
73
74 static td::BufferSlice hash = hasher.finish();
75 return reinterpret_cast<const uint8_t *>(hash.data());

Trail of Bits 78 TVM Upgrade Security Assessment
CONFIDENTIAL

76 }
77
78 const uint8_t *xkcp_keccak(const uint8_t *buf, size_t size) {
79 Keccak_HashInstance hash_instance;
80 // Keccak_HashInitialize_SHA3_256(&hash_instance);
81 Keccak_HashInitialize_SHA3_512(&hash_instance);
82
83 consume_with(buf, size, [&hash_instance](const uint8_t *x, size_t y) {
Keccak_HashUpdate(&hash_instance, x, y); });
84
85 static BitSequence bit_sequence[HASH_SIZE];
86 Keccak_HashFinal(&hash_instance, bit_sequence);
87
88 return bit_sequence;
89 }
90
91 void dump(const char *label, const uint8_t *buf, size_t size) {
92 printf("%s: ", label);
93 for (size_t i = 0; i < size; i++) {
94 printf("%02x", buf[i]);
95 }
96 printf("\n");
97 }

Figure E.1: The code used to fuzz the Keccak implementations

1 diff --git a/lib/high/Keccak/FIPS202/KeccakHash.h
b/lib/high/Keccak/FIPS202/KeccakHash.h

2 index e99d99d..5768049 100644
3 --- a/lib/high/Keccak/FIPS202/KeccakHash.h
4 +++ b/lib/high/Keccak/FIPS202/KeccakHash.h
5 @@ -70,7 +70,7 @@ HashReturn Keccak_HashInitialize(Keccak_HashInstance

*hashInstance, unsigned int
6
7 /** Macro to initialize a SHA3-256 instance as specified in the FIPS 202

standard.
8 */
9 -#define Keccak_HashInitialize_SHA3_256(hashInstance)

Keccak_HashInitialize(hashInstance, 1088, 512, 256, 0x06)
10 +#define Keccak_HashInitialize_SHA3_256(hashInstance)
Keccak_HashInitialize(hashInstance, 1088, 512, 256, 0x01)
11
12 /** Macro to initialize a SHA3-384 instance as specified in the FIPS 202
standard.
13 */
14 @@ -78,7 +78,7 @@ HashReturn Keccak_HashInitialize(Keccak_HashInstance
*hashInstance, unsigned int
15
16 /** Macro to initialize a SHA3-512 instance as specified in the FIPS 202
standard.
17 */
18 -#define Keccak_HashInitialize_SHA3_512(hashInstance)
Keccak_HashInitialize(hashInstance, 576, 1024, 512, 0x06)

Trail of Bits 79 TVM Upgrade Security Assessment
CONFIDENTIAL

19 +#define Keccak_HashInitialize_SHA3_512(hashInstance)
Keccak_HashInitialize(hashInstance, 576, 1024, 512, 0x01)
20
21 /**
22 * Function to give input data to be absorbed.

Figure E.2: Changes needed to turn the SHA-3 reference implementations into Keccak

Trail of Bits 80 TVM Upgrade Security Assessment
CONFIDENTIAL

F. Arithmetic Instruction Fuzzing Code

Figure F.1 contains the code used to fuzz the new arithmetic instructions introduced by the
TVM upgrade.

The code in figure F.1 works roughly as follows. It reads five integers from standard input.
Those five integers are used to construct Fift code. The Fift code exercises one of the new
instructions, as chosen by the fifth integer read from standard input. Some subset of the
first four integers are used as arguments to the new instruction. The result returned by the
instruction is compared to values computed outside of, and embedded in, the Fift code.
Examples of such generated Fift code appear in figures 11.5 and 15.3.

AFLplusplus was the fuzzing engine used to run the code in figure F.1. The code was run
with a trivial (essentially meaningless) initial corpus.

1 #include <err.h>
2 #include <unistd.h>
3
4 #include "common/bigint.hpp"
5 #include "fift/utils.h"
6 #include "vm/vm.h"
7
8 using namespace fift;
9 using namespace td;
10 using namespace vm;
11
12 struct CodeQR {
13 const char *code;
14 RefInt256 q;
15 RefInt256 r;
16 bool needs_y_early;
17 bool needs_z;
18 bool needs_y_late;
19 };
20
21 struct CodeQRInner {
22 const char *code;
23 RefInt256 dividend;
24 RefInt256 divisor;
25 bool needs_y_early;
26 bool needs_z;
27 bool needs_y_late;
28 };
29
30 struct FloorRoundCeil {
31 RefInt256 a[3];
32 };
33
34 #define bail(msg) \

Trail of Bits 81 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/AFLplusplus/AFLplusplus

35 do { \
36 printf(msg "\n"); \
37 exit(0); \
38 } while (0)
39
40 #define opts(cond, s) ((cond) ? (s) : "")
41
42 CodeQR compute(const RefInt256 &x, const RefInt256 &y, const RefInt256 &w,

const RefInt256 &z, unsigned op);
43 CodeQRInner compute_inner(const RefInt256 &x, const RefInt256 &y, const

RefInt256 &w, const RefInt256 &z,
44 unsigned base_op);
45 long checked_to_long(const RefInt256 &x);
46 FloorRoundCeil floor_round_ceil(const RefInt256 &x, const RefInt256 &y);
47
48 int main() {
49 char *xs = nullptr, *ys = nullptr, *ws = nullptr, *zs = nullptr;
50 char *fift = nullptr;
51
52 try {
53 unsigned op;
54 if (scanf("%ms %ms %ms %ms %u", &xs, &ys, &ws, &zs, &op) < 5) {
55 bail("too few args");
56 }
57
58 BigInt256 x, y, w, z;
59 if (strlen(xs) == 0 || x.parse_dec(xs) != strlen(xs) ||

!x.signed_fits_bits(257)) {
60 bail("bad x");
61 }
62 if (strlen(ys) == 0 || y.parse_dec(ys) != strlen(ys) ||

!y.signed_fits_bits(257)) {
63 bail("bad y");
64 }
65 if (strlen(ws) == 0 || w.parse_dec(ws) != strlen(ws) ||

!w.signed_fits_bits(257)) {
66 bail("bad w");
67 }
68 if (strlen(zs) == 0 || z.parse_dec(zs) != strlen(zs) ||

!z.signed_fits_bits(257)) {
69 bail("bad z");
70 }
71 if (op >= 24) {
72 bail("bad op");
73 }
74
75 printf("x = %s\n", xs);
76 printf("y = %s\n", ys);
77 printf("w = %s\n", ws);
78 printf("z = %s\n", zs);
79 printf("op = %u\n", op);
80

Trail of Bits 82 TVM Upgrade Security Assessment
CONFIDENTIAL

81 CodeQR code_qr = compute(make_refint(x), make_refint(y), make_refint(w),
make_refint(z), op);
82
83 if (!code_qr.q->is_valid()) {
84 bail("q is NaN");
85 }
86
87 if (!code_qr.r->is_valid()) {
88 bail("r is NaN");
89 }
90
91 bool q_overflow = !code_qr.q->signed_fits_bits(257);
92 bool r_overflow = !code_qr.r->signed_fits_bits(257);
93
94 string qs = code_qr.q->to_dec_string();
95 string rs = code_qr.r->to_dec_string();
96
97 asprintf(&fift,
98 "\n\
99 { \n\
100 =: ans-r =: ans-q \n\
101 %s =: w %s =: x \n\
102 @' x %s @' w %s %s \n\
103 <b x{%s} s, b> <s 0 runvmx \n\
104 .s \n\
105 abort\"Exitcode != 0\" \n\
106 @' ans-r <> abort\"Incorrect r\" \n\
107 @' ans-q <> abort\"Incorrect q\" \n\
108 } : test \n\
109 \n\
110 %s %s %s %s %s %s test",
111 opts(code_qr.needs_z, "=: z"), opts(code_qr.needs_y_early ||
code_qr.needs_y_late, "=: y"),
112 opts(code_qr.needs_y_early, "@' y"), opts(code_qr.needs_z, "@'
z"), opts(code_qr.needs_y_late, "@' y"),
113 code_qr.code, xs, opts(code_qr.needs_y_early ||
code_qr.needs_y_late, ys), ws, opts(code_qr.needs_z, zs),
114 qs.c_str(), rs.c_str());
115
116 printf("%s\n", fift);
117
118 auto res = mem_run_fift(fift);
119
120 if (res.is_error()) {
121 auto s = res.error().to_string();
122 printf("%s\n", s.c_str());
123 bool integer_overflow = strlen(s.c_str()) >= 4 && strcmp(s.c_str() +
strlen(s.c_str()) - 4, ":-?]") == 0;
124 assert((q_overflow || r_overflow) == integer_overflow);
125 if (integer_overflow) {
126 goto out;
127 }
128 }

Trail of Bits 83 TVM Upgrade Security Assessment
CONFIDENTIAL

129
130 assert(!(q_overflow || r_overflow));
131
132 res.ensure();
133 } catch (VmError &err) {
134 printf("%s\n", err.get_msg());
135 throw;
136 }
137 out:
138
139 free(xs);
140 free(ys);
141 free(ws);
142 free(zs);
143 free(fift);
144
145 return 0;
146 }
147
148 CodeQR compute(const RefInt256 &x, const RefInt256 &y, const RefInt256 &w,
const RefInt256 &z, unsigned op) {
149 static char code[7] = "xxxxxx";
150
151 const unsigned base_op = op / 3;
152 const unsigned round_mode = op % 3;
153
154 CodeQRInner code_qr_inner = compute_inner(x, y, w, z, base_op);
155
156 strcpy(code, code_qr_inner.code);
157 code[3] += round_mode;
158 RefInt256 q = floor_round_ceil(code_qr_inner.dividend,
code_qr_inner.divisor).a[round_mode];
159 RefInt256 r = code_qr_inner.dividend - q * code_qr_inner.divisor;
160 return {code, q, r, code_qr_inner.needs_y_early, code_qr_inner.needs_z,
code_qr_inner.needs_y_late};
161 }
162
163 CodeQRInner compute_inner(const RefInt256 &x, const RefInt256 &y, const
RefInt256 &w, const RefInt256 &z,
164 unsigned base_op) {
165 static char code[7] = "xxxxxx";
166 switch (base_op) {
167 case 0: {
168 // MULADDDIVMOD x y w z - q=floor((xy+w)/z) r=(xy+w)-zq
169 return {
170 "A980", x * y + w, z, true, true,
171 };
172 }
173 case 1: {
174 // ADDDIVMOD x w z - q=floor((x+w)/z) r=(x+w)-zq
175 return {
176 "A900", x + w, z, false, true,
177 };

Trail of Bits 84 TVM Upgrade Security Assessment
CONFIDENTIAL

178 }
179 case 2: {
180 // ADDRSHIFTMOD x w z - q=floor((x+w)/2^z) r=(x+w)-q*2^z
181 long z_long = checked_to_long(z);
182 return {
183 "A920", x + w, make_refint(1) << z_long, false, true, false,
184 };
185 }
186 case 3: {
187 // z ADDRSHIFT#MOD x w - q=floor((x+w)/2^z) r=(x+w)-q*2^z
188 long z_long = checked_to_long(z);
189 if (z_long == 0) {
190 bail("zero z");
191 }
192 sprintf(code, "A930%02lX", (z_long - 1) & 0xff);
193 return {
194 code, x + w, make_refint(1) << z_long, false, false, false,
195 };
196 }
197 case 4: {
198 // MULADDRSHIFTMOD x y w z - q=floor((xy+w)/2^z) r=(xy+w)-q*2^z
199 long z_long = checked_to_long(z);
200 return {
201 "A9A0", x * y + w, make_refint(1) << z_long, true, true, false,
202 };
203 }
204 case 5: {
205 // z MULADDRSHIFT#MOD x y w - q=floor((xy+w)/2^z) r=(xy+w)-q*2^z
206 long z_long = checked_to_long(z);
207 if (z_long == 0) {
208 bail("zero z");
209 }
210 sprintf(code, "A9B0%02lX", (z_long - 1) & 0xff);
211 return {
212 code, x * y + w, make_refint(1) << z_long, true, false,
213 };
214 }
215 case 6: {
216 // LSHIFTADDDIVMOD x w z y - q=floor((x*2^y+w)/z) r=(x*2^y+w)-zq
217 long y_long = checked_to_long(y);
218 return {
219 "A9C0", x * (make_refint(1) << y_long) + w, z, false, true, true,
220 };
221 }
222 case 7: {
223 // y LSHIFT#ADDDIVMOD x w z - q=floor((x*2^y+w)/z) r=(x*2^y+w)-zq
224 long y_long = checked_to_long(y);
225 if (y_long == 0) {
226 bail("zero y");
227 }
228 sprintf(code, "A9D0%02lX", (y_long - 1) & 0xff);
229 return {
230 code, x * (make_refint(1) << y_long) + w, z, false, true, false,

Trail of Bits 85 TVM Upgrade Security Assessment
CONFIDENTIAL

231 };
232 }
233 default: {
234 assert(false);
235 }
236 }
237 }
238
239 long checked_to_long(const RefInt256 &x) {
240 long x_long = x->to_long();
241 if (x < 0 || x > 256) {
242 bail("bad x");
243 }
244 return x_long;
245 }
246
247 FloorRoundCeil floor_round_ceil(const RefInt256 &x, const RefInt256 &y) {
248 int one_toward_zero = y < 0 ? 1 : -1;
249 int y_sgn = y->sgn();
250 return {
251 x / y,
252 (x + (y * y_sgn / make_refint(2)) * y_sgn) / y,
253 (x + (y + one_toward_zero)) / y,
254 };
255 }

Figure F.1: The code used to fuzz the new arithmetic instructions

Trail of Bits 86 TVM Upgrade Security Assessment
CONFIDENTIAL

G. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

From October 23 to October 25, 2023, Trail of Bits reviewed the fixes and mitigations
implemented by the TON team for the issues identified in this report. We reviewed each fix
to determine its effectiveness in resolving the associated issue.

In summary, of the 22 issues described in this report, TON resolved 1 and partially resolved
five. The status of one fix is undetermined. For additional information, please see the
Detailed Fix Review Results below.

ID Title Severity Status

1 Inadequate testing Informational Partially
Resolved

2 Insufficient code comments Informational Partially
Resolved

3 Hash bit ordering differs from FIPS 202 Informational Resolved

4 Action phase fines can be bypassed Undetermined Undetermined

5 Use of deprecated OpenSSL APIs Informational Partially
Resolved

6 MULADDDIVMOD and related instructions have
unclear behavior

Informational Resolved

7 Undefined behavior in CyclicBlobViewImpl High Resolved

8 Use of blst version with new-delete mismatch High Resolved

9 Arithmetic opcodes handled inconsistently Informational Partially
Resolved

Trail of Bits 87 TVM Upgrade Security Assessment
CONFIDENTIAL

10 Inconsistencies between arithmetic operations’
implementation and specification

Low Resolved

11 Missing call to normalize in ADDDIVMOD
implementation

High Resolved

12 Use of deprecated cryptographic APIs Informational Resolved

13 Bignum can segfault when converting to string or
hex

Informational Resolved

14 Risk of infinite loop during RaptorQ FEC Undetermined Resolved

15 Missing to call to normalize in
MULADDRSHIFT#MOD implementation

High Resolved

16 BLS gas costs are inconsistent with specification Low Resolved

17 Use of libsodium might stall the process Low Resolved

18 RIST255_MUL uses nonstandard method for
handling errors

High Resolved

19 Cell slices for public keys and signatures can have
excess data

Low Partially
Resolved

20 Divergent behavior among BLS instructions when
n is 0

Informational Resolved

21 Uninitialized data read when downcast_call fails High Resolved

22 Register c7 tuple element “previous blocks” can be
null

Undetermined Resolved

Trail of Bits 88 TVM Upgrade Security Assessment
CONFIDENTIAL

Detailed Fix Review Results
TOB-TVMUP-1: Inadequate testing
Partially resolved in commits 5a6ad4e513b06187ae91b27cf3b54d2f95e5da3d and
5fa20f46c3aa32a320ca527d5131b3b8d38e85e7. The TON team fixed existing tests,
removed obsolete tests, and integrated tests into the GitHub CI pipeline.

TOB-TVMUP-2: Insufficient code comments
Partially resolved in commit 2088ee57c53f619082b228fbe22bb8a051621aff. The TON
team added documentation to transaction.cpp, collator.cpp, and
validate-query.cpp.

TOB-TVMUP-3: Hash bit ordering differs from FIPS 202
Resolved in commit aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc. The TON team
updated the documentation. Note, however, that the new documentation does not
explicitly state that the TON behavior differs from FIPS; we recommend that this
information be added.

TOB-TVMUP-4: Action phase fines can be bypassed
Undetermined. The client provided the following context for this finding’s fix status:

Action fine for the current message is limited by msg_balance_remaining - gas_fees -
ap.action_fine (see max_cells), so fine cannot exceed remaining balance.

This implies that the exploit scenario provided for this finding is impossible because a
check elsewhere in the code prevents the edge case. We were unable to confirm this either
during the scope of the fix review or the original assessment, hence the undetermined
severity of this finding and the undetermined rating for this finding’s fix status.

TOB-TVMUP-5: Use of deprecated OpenSSL APIs
Partially resolved in commit 35fd778ff7bc4735f77187b8158971c958c35ed8. The TON
team marked the MD5 function as deprecated but did not remove it from the codebase.
The OpenSSL code does not yet use the EVP interface.

TOB-TVMUP-6: MULADDDIVMOD and related instructions have unclear behavior
Resolved in commit aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc. The TON team
updated the documentation.

TOB-TVMUP-7: Undefined behavior in CyclicBlobViewImpl
Resolved in commit d1a67b231b2aa6cb47c28f80c398fd497f15fcb3. The TON team
added a check to ensure that the undefined behavior will not occur.

TOB-TVMUP-8: Use of blst version with new-delete mismatch
Resolved in commit b5ca7398c95888f1c1cf98aa25f2d3ded1abbbe6. The TON team

Trail of Bits 89 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-community/ton-docs/commit/aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc
https://github.com/ton-blockchain/ton/blob/testnet/crypto/block/transaction.cpp#L1722
https://github.com/ton-community/ton-docs/commit/aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc

updated the blst dependency to version v0.3.11, which no longer has the new-delete
mismatch vulnerability.

TOB-TVMUP-9: Arithmetic opcodes handled inconsistently
Partially resolved in commit 72357da63be4ee7a1cf5aac755eea2630334a0ab. The TON
team added the missing quiet opcodes, but there is still insufficient test coverage. The
QADDMULDIVMOD opcode was also removed from Asm.fif.

TOB-TVMUP-10: Inconsistencies between arithmetic operations’ implementation and
specification
Resolved in commit aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc. The TON team
updated the documentation to match the implementation.

TOB-TVMUP-11: Missing call to normalize in ADDDIVMOD implementation
Resolved in commit 7efc1f6cfb0bfaa5804305e1890ed9a40b71b9cc. The TON team
added the missing call to normalize.

TOB-TVMUP-12: Use of deprecated cryptographic APIs
Resolved in commit 35fd778ff7bc4735f77187b8158971c958c35ed8. The TON team
marked the related code as deprecated.

TOB-TVMUP-13: Bignum can segfault when converting to string or hex
Resolved in commit 89bcfe7fde1bc0af9b19dcbbe5b91c5aaed511a9. The TON team
added a check to prevent the segfault.

TOB-TVMUP-14: Risk of infinite loop during RaptorQ FEC
Resolved in commit 6e654cfd2f6ceb8b4b403cdc67e574192014d0da. The TON team
changed the loop iterator type to uint32.

TOB-TVMUP-15: Missing to call to normalize in MULADDRSHIFT#MOD implementation
Resolved in commit e3d230a6844f12e0c0d19665ef4f47beb01bd283. The TON team
added the missing call to normalize.

TOB-TVMUP-16: BLS gas costs are inconsistent with specification
Resolved in commit aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc. The TON team
updated the documentation to match the gas costs in the implementation.

TOB-TVMUP-17: Use of libsodiummight stall the process
Resolved in commit 446d8c940b5427cc526e41cca059770516781c30. The TON team
refactored the way libsodium is initialized such that it now occurs when the TVM boots.

TOB-TVMUP-18: RIST255_MUL uses nonstandard method for handling errors
Resolved in commit 9d9c2e3106e5e0cb9a31491aaa6fd77019273659. The TON team
replaced the CHECK with a prior sign test.

Trail of Bits 90 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-community/ton-docs/commit/aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc
https://github.com/ton-community/ton-docs/commit/aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc

TOB-TVMUP-19: Cell slices for public keys and signatures can have excess data
Partially resolved in commit aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc. The
documentation was updated to state that excess data is ignored. However, it is still possible
for cell slices to have excess data and not throw an exception.

TOB-TVMUP-20: Divergent behavior among BLS instructions when n is 0
Resolved in commit aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc. The TON team
updated the documentation to match the implementation.

TOB-TVMUP-21: Uninitialized data read when downcast_call fails
Resolved in commit 5c1f48cf57304ca9fc3459cf5bd45e7a9f2c01c0. The TON team
added initial values to the stack variables as a precaution.

TOB-TVMUP-22: Register c7 tuple element “previous blocks” can be null
Resolved in commit f74f08645cc6eaff8181d590ed81aec58b3926e5. The TON team added
source code documentation explaining the circumstances under which the previous blocks
can be null.

Trail of Bits 91 TVM Upgrade Security Assessment
CONFIDENTIAL

https://github.com/ton-community/ton-docs/commit/aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc
https://github.com/ton-community/ton-docs/commit/aacbf3e0dd86932e1192e0b6d7b5cfc7d45b7afc

