
TON Foundation TVM and Fift
Final Report

July 29, 2022

Prepared for:

Justin Hyun, Head of Incubation

TON Foundation

Prepared by: Henrik Brodin, Felipe Manzano, and Evan Sultanik



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 TON Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to TON
Foundation under the terms of the project statement of work and has been made public at
TON Foundation’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 TON Security Assessment
CONFIDENTIAL



Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 7

Project Goals 8

Project Targets 9

Project Coverage 10

Automated Testing 11

Codebase Maturity Evaluation 13

Summary of Findings 15

Detailed Findings 17

1. Proxied ADNL pong messages may have empty data 17

2. A block ID with no associated queue will cause a crash 18

3. Token Manager only checks every other download for timeouts 19

4. FunC compiler will dereference an invalid pointer when output file is provided 20

5. ListIterator postfix increment operator returns a local variable by reference 21

6. TVM programs can trigger undefined behavior in bigint.hpp 22

7. TVM programs can trigger undefined behavior in bitstring.cpp 26

8. TVM programs can trigger undefined behavior in tonops.cpp 28

9. TVM programs can trigger undefined behavior in CellBuilder.cpp 30

10. Multiple FIFT stack instructions fail to check the stack depth 32

Trail of Bits 3 TON Security Assessment
CONFIDENTIAL



11. PUSHPOW2 opcode uses twice as much CPU time as opcodes with a similar gas
cost 34

12. Stack use-after-scope in tdutils test 35

13. On-chain pseudorandom number generation 36

14. The NOW opcode can cause consensus issues 37

Summary of Recommendations 38

A. Vulnerability Categories 39

B. Code Maturity Categories 41

C. Code Quality Recommendations 43

D. Risks of Undefined Behavior in C++ 45

Examples of Undefined Behavior 45

How to Detect Undefined Behavior 46

E. Automated Static Analysis 48

Cppcheck 48

F. Automated Dynamic Analysis 49

Setting Up the Tests 50

Measuring Coverage 50

Integrating Fuzzing and Coverage Measurement into the Development Cycle 50

Designing testable systems 51

Identifying properties and choosing their test methods 51

G. Compiler Mitigations 53

H. Opcode Timing and Gas Analysis 57

Trail of Bits 4 TON Security Assessment
CONFIDENTIAL



Executive Summary

Engagement Overview
TON Foundation engaged Trail of Bits to review the security of its TON Virtual
Machine (TVM) and Fift scripting language. From July 5 to July 29, 2022, a team of 3
consultants conducted a security review of the client-provided source code, with 8
person-weeks of effort. Details of the project’s timeline, test targets, and coverage are
provided in subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the target system, including access to the source code,
documentation, and a test network. We performed static and dynamic testing of the target
system and its codebase, using both automated and manual processes.

Summary of Findings
The audit uncovered significant flaws that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

EXPOSURE ANALYSIS

Severity Count

High 4

Medium 0

Low 4

Informational 4

Undetermined 2

CATEGORY BREAKDOWN

Category Count

Data Exposure 1

Denial of Service 5

Undefined Behavior 8

Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

Trail of Bits 5 TON Security Assessment
CONFIDENTIAL



Findings TOB-TON-6, 7, 8, and 9 are all related to undefined behavior in various TVM
components that could lead to nondeterminism in the VM or even crashes due to crafted
TVM opcode sequences.

Trail of Bits 6 TON Security Assessment
CONFIDENTIAL



Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Sam Greenup, Project Manager
dan@trailofbits.com sam.greenup@trailofbits.com

The following engineers were associated with this project:

Henrik Brodin, Consultant Felipe Manzano, Consultant
henrik.brodin@trailofbits.com felipe.manzano@trailofbits.com

Evan Sultanik, Consultant
evan.sultanik@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

June 30, 2022 Pre-project kickoff call

July 11, 2022 Status update meeting #1

July 18, 2022 Status update meeting #2

July 25, 2022 Status update meeting #3

July 29, 2022 Delivery of report draft

July 29, 2022 Report readout meeting

TBD Delivery of final report

Trail of Bits 7 TON Security Assessment
CONFIDENTIAL

mailto:dan@trailofbits.com
mailto:sam.greenup@trailofbits.com
mailto:henrik.brodin@trailofbits.com
mailto:felipe.manzano@trailofbits.com
mailto:evan.sultanik@trailofbits.com


Project Goals

The engagement was scoped to provide a security assessment of the TON TVM and Fift.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Can a maliciously crafted TVM bytecode program or Fift script cause a node to
crash?

● Can a maliciously crafted TVM bytecode program or Fift script cause a node to
expend more computational resources than the gas cost?

● Are TVM programs and Fift scripts deterministic?

● Can a maliciously crafted TVM bytecode program or Fift script be exploited to gain
arbitrary code execution?

● Are the cryptographic primitives sound?

Trail of Bits 8 TON Security Assessment
CONFIDENTIAL



Project Targets

The engagement involved a review and testing of the following target.

TON Monorepo Containing Fift and the TVM

Repository https://github.com/ton-blockchain/ton/

Version eb86234a1120fc3f9c6b390f4471cfd92b875044

Type Smart Contract Virtual Machine and Programming Language

Platform C++

Trail of Bits 9 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/tree/eb86234a1120fc3f9c6b390f4471cfd92b875044


Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

● Static analysis of the entire TON monorepo.

● Manual review of the TVM and Fift portions of the monorepo

● Fuzz testing of the bag of cells data structure and TVM

● Opcode benchmarking (CPU time versus gas cost)

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● The TVM has thousands of unique opcode variants, of which we were only able to
test a small fraction. We observed that many opcodes of the same family have
different runtimes dependent on their constant arguments (see TOB-TON-11). We
have included our test code in Appendix H. Benchmarking of the entire set of
opcodes would be beneficial.

● While we did report all findings as they were encountered (e.g., TOB-TON-4), this
phase of the project was focused on the TVM and Fift.

● This phase of the project only considered the attack surface of validators through
the TVM.

● The codebase would benefit from additional fuzz test harnesses, e.g., in the
validator.

● Finding TOB-TON-14 has the potential to be high severity, but is currently classified
with undetermined severity because there was insufficient time to confirm that it is
exploitable with a proof-of-concept.

Trail of Bits 10 TON Security Assessment
CONFIDENTIAL



Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Cppcheck Cppcheck is a static analysis tool for C/C++ code. It
provides unique code analysis to detect bugs and
focuses on detecting undefined behavior and
dangerous coding constructs.

Appendix E

LLVM
Sanitizers

Compile-time passes that add instrumentation to
detect address misuse (ASAN), memory safety issues
(MSAN), and undefined behavior (UBSAN) at runtime.

Appendix D
and
Appendix F

LibFuzzer An in-process, coverage-guided, evolutionary fuzzing
engine. LibFuzzer can automatically generate a set of
inputs that exercise as many code paths in the
program as possible.

Appendix F

test-timing A custom utility that benchmarks TVM opcodes and
compares their CPU usage against their gas cost.

Appendix H

Areas of Focus
Our automated testing and verification work focused on the following system properties:

● The program does not access invalid memory addresses.

● The program does not exercise undefined behavior.

● TVM opcodes consume computational resources proportional to their gas costs.

Trail of Bits 11 TON Security Assessment
CONFIDENTIAL



Test Results
The results of this focused testing are detailed below.

TVM The TON virtual machine and its data structures.

Property Tool Result

BagOfCell_deserialize. Randomly generated data fed to
Vm::BagOfCell::deserialize() will not trigger memory safety,
undefined behavior, or abrupt termination errors.

LibFuzzer Passed

run_vm_code. Randomly generated cells fed to
Vm::run_vm_code will not trigger memory safety, undefined
behavior, or abrupt termination errors.

LibFuzzer TOB-TON-6,
7, 8, and 9

run_vm_code_specific. Randomly generated cells containing
valid instructions fed to Vm::run_vm_code will not trigger
memory safety, undefined behavior, or abrupt termination
errors.

LibFuzzer Passed

Test-timing. TVM opcodes consume computational resources
commensurate with their gas cost.

test-timing TOB-TON-11

Trail of Bits 12 TON Security Assessment
CONFIDENTIAL



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic All of the high severity findings were related to arithmetic
errors: improper bit shifting of negative values and
signed integer overflow.

Weak

Auditing The TVM and Fift have robust logging and debugging
capabilities.

Strong

Authentication /
Access Controls

This phase of the project did not assess any code
involving authentication or access controls.

Not
Applicable

Complexity
Management

The codebase is well organized, however, a lack of inline
documentation and IDEs’ inability to resolve virtual
methods in all contexts sometimes hindered manual
code review.

Satisfactory

Configuration The TVM has many configuration options. Discovering the
purpose of these options and/or the units of their values
was often only possible by inspecting the code.

Moderate

Cryptography
and Key
Management

We did not discover any cryptographic flaws in the
system, however, we recommend against allowing
pseudorandom numbers to be generated on-chain
(see TOB-TON-13).

Satisfactory

Data Handling Suggestion: Include fuzz tests (see appendix) Satisfactory

Trail of Bits 13 TON Security Assessment
CONFIDENTIAL



Decentralization This phase of the project did not assess any code
involving decentralization.

Not
Applicable

Documentation The high-level documentation about the TON blockchain,
the TVM, and Fift are excellent. However, the codebase
could benefit from more inline comments.

Satisfactory

Maintenance This phase of the project did not assess the maintenance
of the codebase or its deployments.

Not
Considered

Memory Safety
and Error
Handling

Several findings were the result of memory safety errors. Weak

Testing and
Verification

Some TVM opcodes have no unit test coverage. The
codebase has no automated property-based testing, fuzz
testing, or formal verification.

Weak

Trail of Bits 14 TON Security Assessment
CONFIDENTIAL



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Proxied ADNL pong messages may have empty
data

Undefined
Behavior

Informational

2 A block ID with no associated queue will cause a
crash

Denial of Service Informational

3 Token Manager only checks every other download
for timeouts

Denial of Service Low

4 FunC compiler will dereference an invalid pointer
when output file is provided

Denial of Service Low

5 ListIterator postfix increment operator returns a
local variable by reference

Undefined
Behavior

Undetermined

6 TVM programs can trigger undefined behavior in
bigint.hpp

Undefined
Behavior

High

7 TVM programs can trigger undefined behavior in
bitstring.cpp

Undefined
Behavior

High

8 TVM programs can trigger undefined behavior in
tonops.cpp

Undefined
Behavior

High

9 TVM programs can trigger undefined behavior in
CellBuilder.cpp

Undefined
Behavior

High

10 Multiple FIFT stack instructions fail to check the
stack depth

Undefined
Behavior

Low

11 PUSHPOW2 opcode uses twice as much CPU time
as opcodes with a similar gas cost

Denial of Service Low

Trail of Bits 15 TON Security Assessment
CONFIDENTIAL



12 Stack use-after-scope in tdutils test Undefined
Behavior

Informational

13 On-chain pseudorandom number generation Data Exposure Informational

14 The NOW opcode can cause consensus issues Denial of Service Undetermined

Trail of Bits 16 TON Security Assessment
CONFIDENTIAL



Detailed Findings

1. Proxied ADNL pong messages may have empty data

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-1

Target: adnl/adnl-proxy.cpp

Description
The TON Abstract Datagram Network Layer (ADNL) protocol proxy incorrectly re-copies
Pong control packet data to itself after having already been std::move’d, as is depicted in
Figure 1.1. While this is valid C++ code, after line 188 the data object will remain in an
undefined state; the compiler has the option to erase its contents. Therefore, the second
move on line 191 will potentially wipe p.data.

188    p.data = std::move(data);
189    p.adnl_start_time = start_time();
190    p.seqno = out_seqno_;
191    p.data = std::move(data);

Figure 1.1: Duplicate move of the contents of data in adnl-proxy.cpp

This finding is Informational because Pong messages still function to keep a connection
alive regardless of whether they contain a data payload.

Exploit Scenario
A TON node sends invalid Pong messages containing no data payload, causing the node to
be disconnected from its peers.

Recommendations
Short term, remove the erroneous second move on line 191.

Long term, integrate linting tools like cppcheck or clang-tidy into your CI pipeline that can
detect use-after-move bugs.

Trail of Bits 17 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/adnl/adnl-proxy.cpp#L188-L191
https://cppcheck.sourceforge.io/
https://clang.llvm.org/extra/clang-tidy/


2. A block ID with no associated queue will cause a crash

Severity: Informational Difficulty: Medium

Type: Denial of Service Finding ID: TOB-TON-2

Target: crypto/block/block-db.cpp

Description
Obtaining queue information for an invalid block ID leads to an invalid iterator access. It
appears that a return statement was intended but omitted between lines 668 and 669 of
block-db.cpp:

666 if (it == state_info.end()) {
667      promise(td::Status::Error(
668 -666, std::string{"cannot obtain output queue info for block "} +

blk_id.to_str() + " : cannot load state"));
669    }
670 if (it->second->data.is_null()) {

Figure 2.1: Missing return statement before line 670 results in an invalid iterator access.

Since the error handling code inside the if block will fall through, the it iterator will be
invalid when it is dereferenced on line 670, causing a segfault.

This finding is Informational because it does not appear as if the
BlockDbImpl::get_out_queue_info_by_id function that contains this bug is actually
called anywhere in the code. However, if there is in fact a code path that reaches this
function, then the severity of this finding would be High.

Exploit Scenario
There is a code path that reaches this function to retrieve queue information for a block
specified in an ADNL message. A malicious node crafts an ADNL message containing a
nonexistent block ID, causing all of its peers to crash.

Recommendations
Short term, add a return statement between lines 668 and 669.

Long term, determine whether this code is actually used and, if not, consider removing it.

Trail of Bits 18 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/block/block-db.cpp#L666-L670


3. Token Manager only checks every other download for timeouts

Severity: Low Difficulty: Low

Type: Denial of Service Finding ID: TOB-TON-3

Target: validator/token-manager.cpp

Description
Each actor’s token manager periodically checks if its pending token downloads have timed
out. The loop that iterates over the pending downloads follows in Figure 3.1.

70 for (auto it = pending_.begin(); it != pending_.end(); it++) {
71 if (it->second.timeout.is_in_past()) {
72        it->second.promise.set_error(td::Status::Error(ErrorCode::timeout,

"timeout in wait download token"));
73 auto it2 = it++;
74        pending_.erase(it2);
75      } else {
76        it++;
77      }
78    }

Figure 3.1: The iterator will be incremented twice in each for loop, skipping every other entry.

Note that the iterator is incremented twice: once in the for loop on line 70 and again in
each branch of the if statement on lines 73 and 76.

Exploit Scenario
A validator with a poor network connection has many token download timeouts. If the
timeouts occur more frequently than the call to the promise cleanup loop from Figure 3.1,
then the pending token download queue will have unbounded increase.

Recommendations
Short term, remove the unnecessary increment in the for loop on line 70.

Long term, integrate linting tools like cppcheck or clang-tidy into your CI pipeline that can
detect improper iterator incrementing.

Trail of Bits 19 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/validator/token-manager.cpp#L70-L78
https://cppcheck.sourceforge.io/
https://clang.llvm.org/extra/clang-tidy/


4. FunC compiler will dereference an invalid pointer when output file is
provided

Severity: Low Difficulty: Low

Type: Denial of Service Finding ID: TOB-TON-4

Target: crypto/func/func.cpp

Description
The func program will dereference an uninitialized unique pointer if an output filename is
provided rather than printing to STDOUT.

271    std::unique_ptr<std::fstream> fs;
272 if (!output_filename.empty()) {
273      fs = std::make_unique<std::fstream>(output_filename, fs->trunc | fs->out);

Figure 4.1: The unique pointer is dereferenced before being initialized.

On line 273, the fs pointer is dereferenced twice before having been initialized.

Exploit Scenario
The func utility is invoked automatically with a filename specified, for example, in a
contract verification app similar to Etherscan. The utility crashes due to the invalid pointer
dereference.

Recommendations
Short term, remove the invalid dereferences.

Long term, add integration tests to your CI pipeline to test all arguments of the command
line interfaces.

Trail of Bits 20 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/func/func.cpp#L271-L273


5. ListIterator postfix increment operator returns a local variable by reference

Severity: Undetermined Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-5

Target: crypto/func/func.h

Description
ListIterator is a utility class that wraps C style arrays and makes them easily iterable. Its
postfix increment operator returns a local variable by reference.

500    ListIterator& operator++(int) {
501      T* z = ptr;
502      ptr = ptr->next.get();
503 return ListIterator{z};
504    }

Figure 5.1: The return-by-reference value for the postfix increment operator is a local variable.

On line 503, a new stack variable is returned by reference, which produces undefined
behavior in C++.

The severity of this issue is undetermined because we did not exhaustively check all uses of
ListIterator for vulnerability to this bug.

Exploit Scenario
A list iterator is postfix-incremented and assigned to a new variable. The resulting variable
will be an invalid reference and likely segfault on any member access or operation.

Recommendations
Short term, change the return type of the postfix operator to be a value rather than a
reference.

Long term, integrate linting tools like cppcheck or clang-tidy into your CI pipeline that can
detect stale reference bugs.

Trail of Bits 21 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/func/func.h#L500-L504
https://cppcheck.sourceforge.io/
https://clang.llvm.org/extra/clang-tidy/


6. TVM programs can trigger undefined behavior in bigint.hpp

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-6

Target: crypto/common/bigint.hpp

Description
The below sequences of TVM operations have been identified to trigger undefined behavior
in crypto/common/bigint.hpp.

Executing code with undefined behavior in C++ allows the compiler to emit any and all
possible code. Although the program might seem to work as expected, results will often
differ depending on factors such as compiler choice, options, and execution environment.
For example, compilers will often silently optimize away code that it can prove could
execute undefined behavior. For a further discussion, real-world examples of the dangers
of undefined behavior, and our general recommendations, see Appendix D.

Each of the following examples of TVM code that trigger undefined behavior can be
triggered by running

echo '2 3 1 1 29 12 x{aabbccdd} runvmcode .s'
|UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=
1 crypto/fift -I ../crypto/fift/lib/ -i

where aabbccdd is replaced with the corresponding TVM code. Assuming fift is built with
Undefined Behavior Sanitizer (ubsan) support, the program terminates with an error
indicating the undefined behavior.

762 auto dm = std::div(exponent, word_shift);
763 int k = dm.quot;
764 while (size() <= k) {
765 digits[inc_size()] = 0;
766    }
767    digits[k] += ((word_t)factor << dm.rem);

Figure 6.1: Undefined behavior can be invoked on line 767.

On line 767, the computation (word_t)factor << dm.rem triggers a left shift of negative
value -1. TVM code to trigger: 762020a9a9 .

Trail of Bits 22 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L762-L767


967    word_t hi = 0;
968    Tr::add_mul(&hi, &digits[i + j], yv, zp.digits[j]);
969 if (hi && hi != -1) {
970 return invalidate_bool();
971    }
972    digits[size() - 1] += (hi << word_shift);

Figure 6.2: Undefined behavior can be invoked on line 972.

On line 972, the computation hi << word_shift triggers a left shift of negative value -1.
TVM code to trigger: 85f87ca87ca8 .

1008    word_t v = digits[size() - 1];
1009 if (size() >= 2) {
1010 if (v >= Tr::MaxDenorm) {
1011 return 1;
1012 } else if (v <= -Tr::MaxDenorm) {
1013 return -1;
1014 }
1015 int i = size() - 2;
1016 do {
1017 v <<= word_shift;

Figure 6.3: Undefined behavior can be invoked on line 1017.

On line 1017, the computation hi << word_shift triggers a left shift of negative value -8.
TVM code to trigger: c8cf37c8cf37e317a9de2e.

1062    word_t v = digits[0] + (digits[1] << word_shift); // approximation mod
2^64

Figure 6.4: Undefined behavior can be invoked on line 1062.

On line 1062, the computation digits[0] + (digits[1] << word_shift) triggers
signed integer overflow because -1 + -9223372036854775808 cannot be represented in
type 'long long'.
TVM code to trigger: 843ee5 .

1062    word_t v = digits[0] + (digits[1] << word_shift); // approximation mod
2^64

Figure 6.5: Undefined behavior can be invoked on line 1062.

Also on line 1062, the computation digits[0] + (digits[1] << word_shift)
performs a left shift of 4096 by 52 places which cannot be represented in type 'long long'.
TVM code to trigger: 76aeaeae .

Trail of Bits 23 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L967-L972
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1008-L1017
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1062
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1062


1133    v = -yp.digits[--yn];
1134 if (v >= Tr::MaxDenorm) {
1135 return 1;
1136    } else if (v <= -Tr::MaxDenorm) {
1137 return -1;
1138    }
1139 while (yn > xn) {
1140 v <<= word_shift;

Figure 6.6: Undefined behavior can be invoked on line 1140.

On line 1140, the computation v <<= word_shift triggers a left shift of negative value -1.
TVM code to trigger: 68839ba909 .

1153    v <<= word_shift;

Figure 6.7: Undefined behavior can be invoked on line 1153.

On line 1153, the computation v <<= word_shift triggers a left shift of negative value -1.
TVM code to trigger: 68839ba9d9a4 .

1354    digits[size() - 1] += (digits[size()] << word_shift);

Figure 6.8: Undefined behavior can be invoked on line 1354.

On line 1354, the computation digits[size()] << word_shift triggers a left shift of
negative value -1.
TVM code to trigger: 85a0855fa9da0a .

1458    word_t pow = ((word_t)1 << q);
1459    word_t v = digits[size() - 1] & (pow - 1);

Figure 6.9: Undefined behavior can be invoked on line 1459.

On line 1459, the computation pow-1 triggers signed integer overflow because
-9223372036854775808 - 1 cannot be represented in type 'long long'.
TVM code to trigger: 74a93e3e .

1626    digits[size() - 1] += (v << word_shift);

Figure 6.10: Undefined behavior can be invoked on line 1626.

Trail of Bits 24 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1133-L1140
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1153
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1354
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1458-L1459


On line 1626, the computation v << word_shift triggers a left shift of negative value -1.
TVM code to trigger: 7caaeb.

1775    word_t q = digits[k];
1776 if (k > 0 && q > -Tr::MaxDenorm / 2) {
1777 q <<= word_shift;

Figure 6.11: Undefined behavior can be invoked on line 1777.

On line 1777, the computation v << word_shift triggers a left shift of negative value -32.
TVM code to trigger: 85a0b7b602.

1925    td::bitstring::bits_store_long_top(buff, offs, v << (64 - bits), bits);

Figure 6.12: Undefined behavior can be invoked on line 1925.

On line 1925, the computation v << (64 - bits) triggers a left shift of negative value -1.
TVM code to trigger: c868a3fa03.

2045 unsigned long long val = td::bitstring::bits_load_long_top(buff, offs,
bits);
2046 if (sgnd) {
2047 digits[0] = ((long long)val >> (64 - bits));
2048    } else {
2049 digits[0] = (val >> (64 - bits));

Figure 6.13: Undefined behavior can be invoked on line 2049.

On line 2049, the computation (val >> (64 - bits)) performs a right shift using shift
exponent 64 which is too large for 64-bit type 'unsigned long long'.
TVM code to trigger: ed45d0d712.

Exploit Scenario
Blockchain nodes, running user-supplied TVM code, behave differently when the undefined
behavior is triggered and causes the network to lose consensus. Because undefined
behavior can be triggered for very short instruction sequences the attack need not be
intentional.

Recommendations
Short term, consider switching to unsigned types with defined behavior for overflow and
shifts and ensure that any out or range value cannot be produced.

Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
undefined behavior.

Trail of Bits 25 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1626
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1775-L1777
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L1925
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bigint.hpp#L2045-L2049


7. TVM programs can trigger undefined behavior in bitstring.cpp

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-7

Target: crypto/common/bitstring.cpp

Description
The following sequences of TVM operations have been identified to trigger undefined
behavior in crypto/common/bitstring.cpp.

Executing code with undefined behavior in C++ implies anything can happen. Although it
might seem to work as expected, results might differ depending on any factor.
When fift is build with Undefined Behavior Sanitizer, the below example can be triggered by
running:

echo 'x{c8cf903f3f3f3f} runvmcode .s' |
UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=1
crypto/fift -I ../crypto/fift/lib/ -i

193 if (b > 0) {
194 *to = (unsigned char)((*to & (0xff >> b)) | ((int)acc << (8 - b)));
195    }

Figure 7.1: Undefined behavior can be invoked on line 194 of crypto/common/bitstring.cpp.

On line 194, the computation ((int)acc << (8 - b)) performs a left shift of value
530554783 by 7 places. The result cannot be represented by type ‘int’.
TVM code to trigger: c8cf903f3f3f3f.

Additionally, lines 304, 322, and 330 of the bits_memscan function can all cause undefined
behavior by shifting a negative value. This can be triggered by running the
test-smartcont unit test.

Exploit Scenario
Blockchain nodes, running user-supplied TVM code, behave differently when the undefined
behavior is triggered and causes the network to lose consensus. Because undefined
behavior can be triggered for very short instruction sequences the attack need not be
intentional.

Trail of Bits 26 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L193-L195
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L304
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L322
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/common/bitstring.cpp#L330


Recommendations
Short term, consider switching to unsigned types with defined behavior for overflow and
shifts and ensure that any out or range value cannot be produced.

Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
undefined behavior.

Trail of Bits 27 TON Security Assessment
CONFIDENTIAL



8. TVM programs can trigger undefined behavior in tonops.cpp

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-8

Target: crypto/vm/tonops.cpp

Description
A sequence of TVM operations have been identified to trigger undefined behavior in
crypto/vm/tonops.cpp.

Executing code with undefined behavior in C++ implies anything can happen. Although it
might seem to work as expected, results might differ depending on any factor.
When fift is build with Undefined Behavior Sanitizer, the below example can be triggered by
running:

echo 'x{c8853dfa02} runvmcode .s' |
UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=1
crypto/fift -I ../crypto/fift/lib/ -i

475 auto x = stack.pop_int();
476 auto cbr = stack.pop_builder();
477 unsigned len = ((x->bit_size(sgnd) + 7) >> 3);

Figure 8.1: Undefined behavior can be invoked on line 477 of crypto/vm/tonops.cpp.

On line 477, the computation (x->bit_size(sgnd) + 7) performs operation
2147483647+7 which cannot be represented by type ‘int’.
TVM code to trigger: c8853dfa02.

Exploit Scenario
Blockchain nodes, running user-supplied TVM code, behave differently when the undefined
behavior is triggered and causes the network to lose consensus. Because undefined
behavior can be triggered for very short instruction sequences the attack need not be
intentional.

Recommendations
Short term, consider switching to unsigned types with defined behavior for overflow and
shifts and ensure that any out or range value cannot be produced.

Trail of Bits 28 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/tonops.cpp#L475-L477


Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
undefined behavior.

Trail of Bits 29 TON Security Assessment
CONFIDENTIAL



9. TVM programs can trigger undefined behavior in CellBuilder.cpp

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-9

Target: crypto/vm/cells/CellBuilder.cpp

Description
A sequence of TVM operations have been identified to trigger undefined behavior in
crypto/vm/cells/CellBuilder.cpp.

Executing code with undefined behavior in C++ implies anything can happen. Although it
might seem to work as expected, results might differ depending on any factor.
When fift is built with the Undefined Behavior Sanitizer, the below example can be
triggered by running:

echo 'x{686fa1ed44d7395af43e} runvmcode .s' |
UBSAN_OPTIONS=print_stacktrace=1:halt_on_error=1:abort_on_error=1
crypto/fift -I ../crypto/fift/lib/ -i

337    CellBuilder& CellBuilder::store_long(long long val, unsigned val_bits) {
338 return store_long_top(val << (64 - val_bits), val_bits);
339    }

Figure 9.1: Undefined behavior can be invoked on line 338 of crypto/vm/cells/CellBuilder.cpp.

On line 338, the computation val << (64 - val_bits) performs a left shift of the
negative value -2.

TVM code to trigger: 686fa1ed44d7395af43e.

Exploit Scenario
Blockchain nodes, running user-supplied TVM code, behave differently when the undefined
behavior is triggered and causes the network to lose consensus. Because undefined
behavior can be triggered for very short instruction sequences the attack need not be
intentional.

Recommendations
Short term, consider switching to unsigned types with defined behavior for overflow and
shifts and ensure that any out or range value cannot be produced.

Trail of Bits 30 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/cells/CellBuilder.cpp#L337-L339


Long term, integrate fuzzing of TVM with Undefined Behavior Sanitizer enabled to detect
undefined behavior.

Trail of Bits 31 TON Security Assessment
CONFIDENTIAL



10. Multiple FIFT stack instructions fail to check the stack depth

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-10

Target: crypto/fift/words.cpp

Description
Fift is described as a multipurpose scripting language script, similar to Bash.

Certain stack manipulation methods in crypto/fift/stack.hpp:348 do not include an
implicit stack underflow check to bail out in an orderly manner, resulting in undefined
behavior and ultimately a crash. Callers of the stack API, such as in
crypto/fift/words.cpp, are responsible for checking if the stack has enough values.

Two Fift instructions fail to check the correct stack depth before being interpreted: EQV and
EQV?. In these situations, an undefined behavior condition can be reached causing the
interpreter to crash and, at best, exit abruptly.

1309 void interpret_is_eqv(vm::Stack& stack) {
1310 auto y = stack.pop(), x = stack.pop();
1311      stack.push_bool(are_eqv(std::move(x), std::move(y)));
1312    }
1313
1314 void interpret_is_eq(vm::Stack& stack) {
1315 auto y = stack.pop(), x = stack.pop();
1316      stack.push_bool(x == y);
1317    }

Figure 10.1: Undefined behavior can be invoked because the stack size is unchecked for EQV and
EQV? (crypto/fift/words.cpp#1309–1317)

$ echo eq? eq? eqv? | catchsegv ./crypto/fift -I./crypto/fift/lib/ -i
ok
Segmentation fault (core dumped)
*** Segmentation fault

Figure 10.2: A reproducible EQV crash.

Trail of Bits 32 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/fift/words.cpp#L1309-L1317


Exploit Scenario
Fift is a multipurpose language and is therefore expected to gracefully handle undefined
behavior and error states. A Fift script in production contains code that does not properly
check the stack depth, which causes the script to unexpectedly crash.

Recommendations
Short term, make sure all the usages of pop() in the Fift instruction handlers are
interpreted on a stack containing enough items. Document the trust boundaries related to
Fift scripts.

Long term, integrate fuzzing of Fift with the Undefined Behavior Sanitizer (ubsan) enabled
to detect undefined behavior.

Trail of Bits 33 TON Security Assessment
CONFIDENTIAL



11. PUSHPOW2 opcode uses twice as much CPU time as opcodes with a similar
gas cost

Severity: Low Difficulty: Low

Type: Denial of Service Finding ID: TOB-TON-11

Target: crypto/vm/arithops.cpp

Description
The runtime of the PUSHPOW2 TVM opcode is not constant over all inputs. For example,

[0xDF + 1] PUSHPOW2

runs in 0.009ms, but

[0x35 + 1] PUSHPOW2

requires over twice as much CPU time at 0.021ms. Other opcodes that cost the same 26
gas as PUSHPOW2 run significantly faster. For example, the DIVMOD opcode requires about
0.006ms of CPU time.

Exploit Scenario
An attacker sends carefully crafted low gas transactions to the TON blockchain, causing
validators to expend an inordinate amount of CPU time.

Recommendations
Short term, consider increasing the gas cost of the PUSHPOW2 opcode.

Long term, continually benchmark the CPU overhead of each opcode. The time constraints
of this assessment have not permitted us to test every possible opcode/stack state
combination. We have included our test harness in Appendix H which can be extended by
TON to benchmark all opcodes.

Trail of Bits 34 TON Security Assessment
CONFIDENTIAL



12. Stack use-after-scope in tdutils test

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-TON-12

Target: tdutils/test/List.cpp

Description
On destruction of the test case in Figure 12.1 below, the destructors are run in reverse
order. Therefore, id is destroyed before threads. At that point a thread in threads could
still be running with a reference to id.

171    TEST(Misc, TsListConcurrent) {
172      td::TsList<ListData> root;
173      td::vector<td::thread> threads;
174      std::atomic<td::uint64> id{0};
175 for (std::size_t i = 0; i < 4; i++) {
176        threads.emplace_back(
177            [&] { do_run_list_test<td::TsListNode<ListData>,
td::TsList<ListData>, td::TsListNode<ListData>>(root, id); });
178      }
179    }

Figure 12.1: The id variable will be destructed before threads
(tdutils/test/List.cpp#171–179)

Exploit Scenario
A thread increments id after it has been destructed

Recommendations
Short term, reorder

td::vector<td::thread> threads;
std::atomic<td::uint64> id{0};

to become
std::atomic<td::uint64> id{0};

td::vector<td::thread> threads;

Long term, run all tests with the LLVM address sanitizer (ASAN) enabled.

Trail of Bits 35 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/tdutils/test/List.cpp#L171-L179


13. On-chain pseudorandom number generation

Severity: Informational Difficulty: Low

Type: Data Exposure Finding ID: TOB-TON-13

Target: crypto/vm/tonops.cpp

Description
The TVM includes several opcodes for generating pseudorandom numbers on-chain. Since
the entire chain is public and the TVM itself is deterministic, it is possible to predict the next
random value with high accuracy, even if the pseudorandom number generator is seeded
by the current time or block parameters as a source of entropy. This weakness has been
thoroughly studied in Ethereum smart contracts.

Exploit Scenario
A malicious user exploits a lottery contract by predicting the winning value.

Recommendations
Short term, thoroughly document the risks of randomness without an external oracle.

Long term, consider deprecating the opcodes related to random number generation.

Trail of Bits 36 TON Security Assessment
CONFIDENTIAL

https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620


14. The NOW opcode can cause consensus issues

Severity: Undetermined Difficulty: Low

Type: Denial of Service Finding ID: TOB-TON-14

Target: crypto/vm/tonops.cpp

Description
The TVM includes the NOW opcode, which returns the current Unix time as an integer. If
several validators are attempting to validate a shardchain block, they may each arrive at a
different value for the NOW opcode.

This finding is undetermined because there was insufficient time during this phase of the
assessment to test it by creating a proof-of-concept exploit.

Exploit Scenario
A smart contract is deployed that, when called, checks if NOW is an even or odd number. If
the time is even, the contract returns a reward. If the value is odd, the contract causes an
unhandled exception to be thrown. Unless the validators all validate the block on the exact
same parity second, it is likely that half of the validators will sign the block and the other
half will reject the block.

Recommendations
Short term, consider rounding NOW to a multiple of the block generation time.

Long term, consider switching the semantics of NOW to instead return the time the last
block was added to the chain.

Trail of Bits 37 TON Security Assessment
CONFIDENTIAL



Summary of Recommendations

The TON TVM and Fift scripting language are in active development. Trail of Bits
recommends that TON address the findings detailed in this report and take the following
additional steps:

● Integrate automated linting using tools like Cppcheck (see Appendix E) into the TON
continuous integration pipeline

● Regularly fuzz test the codebase, particularly all entry points that accept untrusted
user input

● Improve unit tests to cover all TVM opcode families

● Regularly run all unit and fuzz tests with LLVM sanitizers enabled (see Appendices D
and G)

● Improve inline comments in the codebase

Trail of Bits 38 TON Security Assessment
CONFIDENTIAL



A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 39 TON Security Assessment
CONFIDENTIAL



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 40 TON Security Assessment
CONFIDENTIAL



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 41 TON Security Assessment
CONFIDENTIAL



Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 42 TON Security Assessment
CONFIDENTIAL



C. Code Quality Recommendations
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

General Recommendations
● Ensure that all classes obey the “rule of five”. Every C++ class that implements a

custom destructor, copy-constructor, copy-assignment operator, move constructor,
or move assignment operator should implement all five. For example, CellBuilder
only implements three of the five:

32 class CellBuilder : public td::CntObject {
︙

48      CellBuilder();
49 virtual ~CellBuilder() override;
︙

93      CellBuilder& operator=(const CellBuilder&);
94      CellBuilder& operator=(CellBuilder&&);

For more information, see:
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#
Rc-five
https://en.cppreference.com/w/cpp/language/rule_of_three

● Only use std::move when absolutely necessary. The TON codebase includes
many uses of std::move that are at best redundant, can sometimes prevent
compiler optimizations, and at worst can lead to security findings like TOB-TON-1.
The codebase has 186 usages of std::move to return a value from a function.
These are all unnecessary, and will in fact prevent the compiler from performing
Named Return Value Optimization (NRVO), which would produce even more
performant code than the std::move. You can detect such unnecessary moves by
adding the -Wpessimizing-move and -Wredundant-move compiler options.

crypto/vm/dict.cpp:

● Do not call virtual methods during object construction. If the validate
argument to any of the constructors of DictionaryBase is set to true, the
force_validate() function will be invoked. This will in turn invoke the virtual
method validate().

Invoking the base-class version of a virtual method during object construction might
not work as expected; see
https://isocpp.org/wiki/faq/strange-inheritance#calling-virtuals-from-ctors

Trail of Bits 43 TON Security Assessment
CONFIDENTIAL

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five
https://en.cppreference.com/w/cpp/language/rule_of_three
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.cpp#L35
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.cpp#L35
https://isocpp.org/wiki/faq/strange-inheritance#calling-virtuals-from-ctors


AugmentedDictionary appears to override the validate method, but it handles
the situation by invoking force_validate() in each of its own constructors.

crypto/vm/cells/CellUsageTree.cpp:

● Consider passing arguments by reference if they can never be nullptr.
In the mark_path function of the cell usage tree node, if the master_tree
argument is ever nullptr and the build has NDEBUG defined, then there will be a null
pointer dereference on line 57. Passing master_tree as CellUsageTree& would
prevent this at compile time.

51 bool CellUsageTree::NodePtr::mark_path(CellUsageTree* master_tree)
const {
52      DCHECK(master_tree);
53 auto tree = tree_weak_.lock();
54 if (tree.get() != master_tree) {
55 return false;
56      }
57      master_tree->mark_path(node_id_);
58 return true;
59    }

This function does not appear to ever be called in a context where master_tree
could be nullptr, but it could be added in the future.

Trail of Bits 44 TON Security Assessment
CONFIDENTIAL

https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.h#L595
https://github.com/ton-blockchain/ton/blob/eb86234a1120fc3f9c6b390f4471cfd92b875044/crypto/vm/dict.cpp#L2459


D. Risks of Undefined Behavior in C++
The C++ standard imposes no restrictions on the observable operation of a program that
executes undefined behavior. Undefined behavior includes accessing memory outside of
array bounds, null pointer dereferencing, signed integer overflow, and bit-shifting by
negative values. While a program is capable of operating normally even if it executes
undefined behavior, there is no guarantee of this. In fact, most compilers can and will
silently break programs containing undefined behavior in subtle, hard-to-catch ways,
particularly when applying optimizations.

Examples of Undefined Behavior
For example, consider the following program that has a negative bit-shift on line 3:

1 int main(int argc, char** argv) {
2 if(argc > 1) {
3 return 1234 << -2;
4        } else {
5 return 0;
6        }
7    }

Figure B.1: A simple program that exhibits undefined behavior on line 3.

With optimizations enabled, the latest version of the clang compiler will correctly identify
the undefined behavior on line 3 and completely optimize out the entire first half of the
branch. The resulting assembly for the compiled program—that always returns zero
regardless of the inputs—is given in Figure B.2.

1 main: # @main
2 xorl %eax, %eax
3 retq

Figure B.2: The assembly listing for the program in Figure B.1 compiled with optimizations.

A more insidious example of the dangers of undefined behavior is given in Figure B.3,
below.

Trail of Bits 45 TON Security Assessment
CONFIDENTIAL



1 #include <limits>
2 #include <cstdint>
3 #include <iostream>
4 int main(int argc, char *argv[]) {
5 uint32_t u0 = std::numeric_limits<uint32_t>::max();
6 uint32_t u1 = u0 + 1;
7
8 if (u1 < u0) {
9        std::cout << "Unsigned wrap!" << std::endl;
10      }
11      std::cout << "u0: " << u0 << " u1: " << u1 << std::endl;
12
13 int32_t i0 = std::numeric_limits<int32_t>::max();
14 int32_t i1 = i0+1;
15
16 if (i1 < i0) {
17        std::cout << "Signed wrap!" << std::endl;
18      }
19      std::cout << "i0: " << i0 << " i1: " << i1 << std::endl;
20    }

Figure B.3: A real-world example of the dangers of undefined behavior.

When compiled without optimizations enabled, the code will print

Unsigned wrap!
u0: 4294967295 u1: 0
Signed wrap!
i0: 2147483647 i1: -2147483648

as would be expected.

However, line 14 contains a signed integer overflow, which is undefined behavior. With
optimizations enabled, clang will optimize away the entire if statement on lines 16
through 18 and instead print

Unsigned wrap!
u0: 4294967295 u1: 0
i0: 2147483647 i1: -2147483648

How to Detect Undefined Behavior
Although some types of undefined behavior can be caught at compile time by static
analyzers like cppcheck and clang-tidy, most undefined classes of behavior are highly
dependent on runtime context. Clang and gcc both have undefined behavior

Trail of Bits 46 TON Security Assessment
CONFIDENTIAL



sanitizers (ubsan) that can instrument the code to report when the program encounters
undefined behavior during execution. We recommend running all unit and fuzz tests with
ubsan enabled.

Trail of Bits 47 TON Security Assessment
CONFIDENTIAL

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


E. Automated Static Analysis

This appendix describes the setup of the automated analysis tools used in this audit.

Though static analysis tools frequently report false positives, there are certain categories of
issues that they detect with essentially perfect precision, such as memory leaks,
misspecified format strings, and use of unsafe APIs. We recommend that you periodically
run these static tools and review their findings.

Cppcheck

To install Cppcheck, we followed the instructions on the official website. We ran the tool
with all analyses enabled:

cppcheck --enable=all --inconclusive . 2> cppcheck.txt

The tool helped us to find the issue described in TOB-TON-4 as well as some of the issues
described in the code quality appendix.

Trail of Bits 48 TON Security Assessment
CONFIDENTIAL

https://cppcheck.sourceforge.io/


F. Automated Dynamic Analysis

This appendix describes the setup of the automated dynamic analysis tools and test
harnesses used during this audit.

In most software, unit and integration tests are typically the extent in which testing is
performed. This type of testing allows for detecting the presence of functionality, adhering
to the expected specification. However, these methods of testing do not account for other
potential behaviors an implementation may have.

Fuzzing and property testing complement both unit and integration testing through the
identification of extra behavior in a component of a system. Test cases are generated and
subsequently provided to a component of the system as input. Upon execution, properties
of the component are observed for deviations from expected behaviors.

The primary difference between fuzzing and property testing is the method of generating
inputs and observing behavior. Fuzzing typically attempts to provide random or
randomly-mutated inputs in an attempt to identify edge cases in entire components.
Property testing typically provides inputs sequentially or randomly within a given format,
checking to ensure a specific property of the system holds upon each execution.

By developing fuzzing and property testing alongside the traditional set of unit and
integration tests, the overall security posture and stability of a system is likely to improve
since edge cases and unintentended behaviors can be pruned during the development
process.

libFuzzer-Based Test Cases for TON

We have included a collection of fuzz tests that uses libFuzzer, an in-process,
coverage-guided, evolutionary fuzzing engine integrated into Clang. These tests cover a
variety of deserialization and processing functions, as well as functions that handle
untrusted inputs. We integrated them into the build process to improve the coverage of the
TVM and Fift code. For instance, figures F.1 and F.2 show the libFuzzer tests that we created
to automatically generate both valid and invalid TVM opcode sequences.

#include <algorithm>

#include "vm/vm.h"
#include "vm/cp0.h"
#include "vm/dict.h"
#include "td/utils/tests.h"

std::string run_vm(td::Ref<vm::Cell> cell) {
vm::init_op_cp0();
vm::DictionaryBase::get_empty_dictionary();

Trail of Bits 49 TON Security Assessment
CONFIDENTIAL

https://llvm.org/docs/LibFuzzer.html


class Logger: public td::LogInterface {
public:

void append(td::CSlice slice) override {
res.append(slice.data(), slice.size());

}
std::string res;

};
static Logger logger;
logger.res = "";
td::set_log_fatal_error_callback([](td::CSlice message) {

td::default_log_interface->append(logger.res);
});
vm::VmLog log { &logger, td::LogOptions::plain() };
log.log_options.level = verbosity_FATAL;
log.log_options.fix_newlines = true;
td::set_verbosity_level(verbosity_PLAIN);
auto total_data_cells_before = vm::DataCell::get_total_data_cells();
SCOPE_EXIT {

auto total_data_cells_after = vm::DataCell::get_total_data_cells();
ASSERT_EQ(total_data_cells_before, total_data_cells_after);

};

vm::Stack stack;
vm::GasLimits gas_limit(1000, 1000);

vm::run_vm_code(vm::load_cell_slice_ref(cell), stack, 0 /*flags*/,
nullptr /*data*/, std::move(log) /*VmLog*/, nullptr,

&gas_limit);
return logger.res; // must be a copy

}

td::Ref<vm::Cell> to_cell(const unsigned char *buff, int bits) {
return vm::CellBuilder().store_bits(buff, bits, 0).finalize();

}

/* run_vm_code */
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

run_vm(to_cell(Data, std::min(Size*8, static_cast<size_t>(1023))));
return 0;

}

Figure F.1: A libFuzzer test for running automatically generating possibly invalid TVM opcode
sequences.

/*
* vm_instr_fuzz.cpp
*
*  Created on: 14 Jul 2022
*      Author: hbrodin

Trail of Bits 50 TON Security Assessment
CONFIDENTIAL



*/

#include <algorithm>

#include "vm/vm.h"
#include "vm/cp0.h"
#include "vm/dict.h"
#include "td/utils/tests.h"

std::string run_vm(td::Ref<vm::Cell> cell) {
vm::init_op_cp0();
vm::DictionaryBase::get_empty_dictionary();

class Logger: public td::LogInterface {
public:

void append(td::CSlice slice) override {
res.append(slice.data(), slice.size());

}
std::string res;

};
static Logger logger;
logger.res = "";
td::set_log_fatal_error_callback([](td::CSlice message) {

td::default_log_interface->append(logger.res);
});
vm::VmLog log { &logger, td::LogOptions::plain() };
log.log_options.level = verbosity_FATAL;
log.log_options.fix_newlines = true;
td::set_verbosity_level(verbosity_PLAIN);
auto total_data_cells_before = vm::DataCell::get_total_data_cells();
SCOPE_EXIT {

auto total_data_cells_after = vm::DataCell::get_total_data_cells();
ASSERT_EQ(total_data_cells_before, total_data_cells_after);

};

vm::Stack stack;
vm::GasLimits gas_limit(1000, 1000);

vm::run_vm_code(vm::load_cell_slice_ref(cell), stack, 0 /*flags*/,
nullptr /*data*/, std::move(log) /*VmLog*/, nullptr,

&gas_limit);
return logger.res; // must be a copy

}

td::Ref<vm::Cell> to_cell(const unsigned char *buff, int bits) {
return vm::CellBuilder().store_bits(buff, bits, 0).finalize();

}

void serialize(const uint8_t *data, size_t size) {

size_t consumed = 0;
size_t nfinalized = 0;

Trail of Bits 51 TON Security Assessment
CONFIDENTIAL



std::vector<td::Ref<vm::Cell>> cells;

while (consumed < size) {
auto avail = size-consumed;
auto avail_bits = avail*8;
//auto consume_bits = std::min(avail_bits, 1023ul);
auto consume_bits = std::min(avail_bits, 257ul);
auto consume_bytes = consume_bits/8+1; // roughly...

vm::CellBuilder cb;
cb.store_bits(data + consumed, consume_bits, 0);

bool stop = false;
if (nfinalized >= vm::Cell::max_refs) {

for (size_t ci =
nfinalized-vm::Cell::max_refs;ci<nfinalized;ci++) {

if (!cb.store_ref_bool(cells[ci])) {
stop = true;
break;

}
}

}
if (stop)

break;
if (cb.get_depth() > vm::Cell::max_depth)

break;
cells.push_back(cb.finalize());
nfinalized++;
consumed += consume_bytes;

}
if (cells.empty())

return {};
return cells.back();

}

/* run_vm_code_specific */
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

auto cells = to_cells(Data, Size);
if (!cells)

return -1;
run_vm(*cells);
return 0;

}

Figure F.2: A libFuzzer test for running automatically generating valid TVM opcode sequences.

These tests cover the following functionality:

● Feeds randomly generated cells to Vm::run_vm_code to uncover memory safety,
undefined behavior, and abrupt termination errors.

Trail of Bits 52 TON Security Assessment
CONFIDENTIAL



● Feeds randomly generated cells containing valid instructions to Vm::run_vm_code
to uncover memory safety, undefined behavior, and abrupt termination errors.

Setting Up the Tests

To build the libFuzzer tests, we recommend using Clang++ version 10.0 or newer. The
CXXFLAGS variable will need to be modified in the makefile to include the
-fsanitize=fuzzer,address,undefined flag. This flag will enable the fuzzer as well as
the AddressSanitizer and UndefinedBehaviorSanitizer detectors to catch subtle issues that
may not cause the program crash.

Measuring Coverage

Regardless of how inputs are generated, an important task after running a fuzzing
campaign is to measure its coverage. To do so, we used Clang's source-based code
coverage feature. This feature can be enabled by adding the --enable-cov flag to the
CXXFLAGS variable. We recommend keeping a separate build to measure coverage
because this flag could be incompatible with the libFuzzer instrumentation.

Integrating Fuzzing and Coverage Measurement into the Development
Cycle

Once the fuzzing procedure has been tuned to be fast and efficient, it should be properly
integrated in the development cycle to catch bugs. We recommend adopting the following
procedure to integrate fuzzing using a CI system:

1. After the initial fuzzing campaign, save the corpora that is generated for every test.

2. For every internal development milestone, new feature, or public release, rerun the
fuzzing campaign for at least 24 hours starting with the current corpora for each
test.

3. Update the corpora with the new inputs generated.

Note that, over time, the corpora will come to represent thousands of CPU hours of
refinement and will be very valuable for guiding efficient code coverage during fuzz testing.
However, an attacker could also use them to quickly identify vulnerable code. To mitigate
this risk, we recommend keeping the fuzzing corpora in an access-controlled storage
location rather than a public repository. Some CI systems allow maintainers to keep a
cache to accelerate building and testing. The corpora could be included in such a cache if
they are not very large. For more on fuzz-driven development, see the CppCon 2017 talk
given by Google’s Kostya Serebryany.

Trail of Bits 53 TON Security Assessment
CONFIDENTIAL

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf


Designing testable systems
Modern software development best practices typically lead to easier implementation of
fuzzing and property testing. System modularity, use of reusable libraries, a centralized
configuration system, and isolated execution all helps ease the development of testing
harnesses.

By forming a system of modular components, each component is able to be tested
independently. This typically reduces the complexity of each component’s test harness, as
well as helps improve the overall efficiency of testing since test coverage can usually be
more easily achieved through independent configuration, and expensive-to-test
components do not impact the testing of other components.

Compounding the use of modular components, reusing libraries helps improve test
coverage, since the libraries themselves can be tested directly. For example, if an
application uses a function defined in such a library, but the path required to gain coverage
of the function is difficult for the test harness to reach, this is not as much of a concern
since the function is independently testable. This applies across all components re-using
these libraries.

Identifying properties and choosing their test methods
To make fuzzing and property testing effective, it’s important to choose the appropriate
testing method and baseline properties for expected behaviors. This process varies
depending on the target, but the same general approach applies.

Evaluating the expected behaviors of a system is often an easy way to identify properties to
test. For example:

● A marketplace application allows for users to purchase listed items in buik through a
JSON API.

● Users should only be able to submit orders in valid JSON to the API.
● Users should not be able to view a listing if the supply is 0.
● Users should not be able to purchase more than the available supply.

Given these properties of the system, we can evaluate which properties would be most
suitable for fuzzing. For the first property, we are evaluating the correctness of the API’s
JSON parser for potential flaws which could lead to invalid JSON to be parsed maliciously. A
fuzzer is likely the best approach for this property since it is targeting parser logic, which
typically involves mutating inputs over time either randomly or sequentially to gain path
coverage.

Trail of Bits 54 TON Security Assessment
CONFIDENTIAL



The remaining properties are deeper into the system, beyond the parsing of the JSON. In
this case, we know the format of the order JSON, and want to test how the parameters of
an order affect our properties. Therefore, property testing is likely the best approach. We
can build property tests to ensure these properties hold under before and after all
interactions with the API. Conditions for these might be as follows:

● Users should not be able to view a listing if the supply is 0.
○ If listing.visible == true and listing.supply > 0

■ The listing is visible with available supply.
○ If listing.visible == false and listing.supply == 0

■ The listing is not visible and has no available supply.
● Users should not be able to purchase more than the available supply.

○ If listing.supply <= listing.initial_supply
■ The listing supply has not exceeded the initial supply.

Given property tests for these conditions, potential issues such as if listing.supply is
defined as a uint, with facile order validations such as (listing.supply -
order.amount) > 0 ? listing.fulfill(order) : listing.deny(order) could
result in a situation such as (10 - 11) > 0 evaluating to true due to unsigned integer
underflow, leading to subsequent validations failing to apply, influencing
listing.visible and listing.supply and resulting in undefined behavior.

Trail of Bits 55 TON Security Assessment
CONFIDENTIAL



G. Compiler Mitigations

Compiler settings were not audited during the engagement. We recommend reviewing the
settings in order to harden production builds as much as possible. The following table lists
the basic compiler flags that should be used for hardening.

GCC or Clang Flag What It Enables or Does

-z noexecstack

This flag marks the program’s data sections (including
the stack and heap) as non-executable (NX).

This makes it more difficult for an attacker to execute
shellcode. Attackers who wish to bypass NX must resort
to return-oriented programming (ROP), an exploitation
method that is more difficult as well as less reliable
across different builds of a program. This mitigation is
enabled by default.

-Wl,-z,relro,-z,now

This flag enables full RELRO (relocations read-only).
Segments are read-only after relocation, and lazy
bindings are disabled.

It is a mitigation technique used to harden the data
sections of an ELF process. It has three modes of
operation: disabled, partial, and full. When a program
uses a function from a dynamically loaded library, the
function address is stored in the GOT.PLT section
(Global Offset Table for Procedure Linkage Table).

When RELRO is disabled, each function address entry in
the GOT.PLT table points to a dynamic resolver that
resolves the entry to the actual address of the intended
function when it is first called. In such a case, the
memory location of the address is both readable and
writable. As a result, an attacker who has control over
the process control flow could change the entry of a
given function in GOT.PLT to point to any other
executable address. For example, the attacker could
change the puts function's GOT.PLT entry to point to a
system function. Then, if the program called
puts(“bin/sh”), system(“/bin/sh”) would be
called instead. When RELRO is fully enabled, the
dynamic resolver resolves all of the addresses upon a
program’s startup and changes the permissions of data

Trail of Bits 56 TON Security Assessment
CONFIDENTIAL



sections (and therefore GOT.PLT) to read-only.

-fstack-protector-all

Or (less secure):

-fstack-protector-strong
--param ssp-buffer-size=4

This flag adds stack canaries for all functions. Note that
this flag may affect the collector’s performance.

Stack canaries (stack cookies) make it more difficult to
exploit buffer overflow vulnerabilities. A stack canary is
a global randomly generated value that is copied to the
stack between the stack variables and stack metadata in
a function's prologue. When a function returns, the
canary on the stack is checked against the global value.
The program exits if there is a mismatch, making it
more difficult for an attacker to overwrite the return
address on the stack. In certain circumstances, attackers
may be able to bypass this mitigation by leaking the
cookie through a separate information leak vulnerability
or by brute-forcing the cookie byte by byte.

To protect only functions that have buffers, use the
alternative version indicated.

-fPIE -pie
This flag compiles the source as a PIE, which ASLR
depends on.

-D_FORTIFY_SOURCE=2 -O2

Or (less secure):

-D_FORTIFY_SOURCE=1 -O1

This flag enables FORTIFY_SOURCE protections. These
protections require an appropriate optimization flag
(-O1 or -O2).

The protection is a glibc-specific feature that enables a
series of mitigations primarily aimed at preventing
buffer overflows. With a FORTIFY_SOURCE level of 1,
glibc will add compile-time warnings when potentially
unsafe calls to common libc functions (e.g., memcpy
and strcpy) are made. With a FORTIFY_SOURCE level of
2, glibc will add more stringent runtime checks to these
functions and enable a number of lesser-known
mitigations. For example, it will disallow the use of the
%n format specifier in format strings that are not
located in read-only memory pages. This will prevent
overwriting data (and gaining code execution) with
format string vulnerabilities.

The latter version is less secure, as it enables only
compile-time measures; the former adds additional

Trail of Bits 57 TON Security Assessment
CONFIDENTIAL



runtime checks, which may affect the collector’s
performance.

-fstack-clash-protection

This flag adds checks to functions that may allocate a
large amount of memory on the stack to ensure that the
new stack pointer and stack frame will not overlap with
another memory region, such as the heap.

It mitigates a "stack clash vulnerability" in which a
program's stack memory region grows so much that it
overlaps with another memory region. This bug makes
the program confuse the stack memory address with
another memory address (e.g., that of the heap); as a
result, the regions’ data will overlap, which could lead to
a denial of service or to control flow hijacking. The stack
clash protection mitigation adds explicit memory
probing to any function that allocates a large amount of
stack memory; when explicit memory probing is used,
the function's stack allocation will never make the stack
pointer jump over the stack memory guard page, which
is located before the stack.

-fsanitize=cfi
-fvisibility=hidden
-flto

(Clang/LLVM only)

This flag enables CFI checks that help prevent control
flow hijacking.

-fsanitize=safe-stack

(Clang/LLVM only)

This flag enables SafeStack, which splits the stack
frames of certain functions into a safe stack and an
unsafe stack, making hijacking of the program's control
flow more difficult (Clang/LLVM only).

-Wall -Wextra -Wpedantic
-Wshadow -Wconversion
-Wformat-security

This flag enables compile-time checks and warnings.

System What It Enables or Does

ASLR (Address Space Layout
Randomization)

This feature randomizes the memory location of each
section of the program. This makes it more difficult for
an attacker to write reliable exploits, primarily by
impeding jumps to ROP gadgets. ASLR requires

Trail of Bits 58 TON Security Assessment
CONFIDENTIAL

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/SafeStack.html


cooperation from both the system and the compiler.

To fully support ASLR, a program must be compiled as a
position-independent executable (PIE). Most of the
Linux distributions have ASLR enabled. This can be
checked by reading the value stored in the
/proc/sys/kernel/randomize_va_space file: 0 means that
ASLR is disabled, 1 means it is partially enabled (only
some bits of the addresses are randomized), and 2
means it is fully enabled. This file is writable, and an
admin can disable or enable the mitigation. An
information leak in the program may enable an attacker
to bypass ASLR

Trail of Bits 59 TON Security Assessment
CONFIDENTIAL



H. Opcode Timing and Gas Analysis

We implemented a utility to compare the timing of VM execution against the gas used. The
goal was to discover opcodes or opcode sequences that consume an inordinate amount of
computational resources relative to their gas cost. Its source code is listed in Figure H.1.

The utility expects two command line arguments, each a hex string: The TVM code used to
set up the stack and VM state followed by the TVM code to measure. For example, to test
the DIVMODC opcode:

$ test-timing 80FF801C A90E 2>/dev/null
OPCODE,runtime mean,runtime stddev,gas mean,gas stddev
A90E,0.0066416,0.00233496,26,0

The runtime is listed in milliseconds.

#include <ctime>
#include <iomanip>

#include "vm/vm.h"
#include "vm/cp0.h"
#include "vm/dict.h"
#include "fift/utils.h"
#include "common/bigint.hpp"

#include "td/utils/base64.h"
#include "td/utils/tests.h"
#include "td/utils/ScopeGuard.h"
#include "td/utils/StringBuilder.h"

td::Ref<vm::Cell> to_cell(const unsigned char *buff, int bits) {
return vm::CellBuilder().store_bits(buff, bits, 0).finalize();

}

long double timingBaseline;

typedef struct {
long double mean;
long double stddev;

} stats;

struct runInfo {
long double runtime;
long long gasUsage;
int vmReturnCode;

runInfo() : runtime(0.0), gasUsage(0), vmReturnCode(0) {}
runInfo(long double runtime, long long gasUsage, int vmReturnCode) :

runtime(runtime), gasUsage(gasUsage), vmReturnCode(vmReturnCode) {}

runInfo operator+(const runInfo& addend) const {
return {runtime + addend.runtime, gasUsage + addend.gasUsage, vmReturnCode ? vmReturnCode :

addend.vmReturnCode};

Trail of Bits 60 TON Security Assessment
CONFIDENTIAL



}

runInfo& operator+=(const runInfo& addend) {
runtime += addend.runtime;
gasUsage += addend.gasUsage;
if(!vmReturnCode && addend.vmReturnCode) {
vmReturnCode = addend.vmReturnCode;

}
return *this;

}

bool errored() const {
return vmReturnCode != 0;

}
};

typedef struct {
stats runtime;
stats gasUsage;
bool errored;

} runtimeStats;

runInfo time_run_vm(td::Slice command) {
unsigned char buff[128];
const int bits = (int)td::bitstring::parse_bitstring_hex_literal(buff, sizeof(buff),

command.begin(), command.end());
CHECK(bits >= 0);

const auto cell = to_cell(buff, bits);

vm::init_op_cp0();
vm::DictionaryBase::get_empty_dictionary();

class Logger : public td::LogInterface {
public:
void append(td::CSlice slice) override {
res.append(slice.data(), slice.size());

}
std::string res;

};
static Logger logger;
logger.res = "";
td::set_log_fatal_error_callback([](td::CSlice message) {

td::default_log_interface->append(logger.res); });
vm::VmLog log{&logger, td::LogOptions::plain()};
log.log_options.level = 4;
log.log_options.fix_newlines = true;
log.log_mask |= vm::VmLog::DumpStack;

vm::Stack stack;
try {
vm::GasLimits gas_limit(10000, 10000);

std::clock_t cStart = std::clock();
int ret = vm::run_vm_code(vm::load_cell_slice_ref(cell), stack, 0 /*flags*/, nullptr

/*data*/,
std::move(log) /*VmLog*/, nullptr, &gas_limit);

std::clock_t cEnd = std::clock();
const auto time = (1000.0 * static_cast<long double>(cEnd - cStart) / CLOCKS_PER_SEC) -

timingBaseline;

Trail of Bits 61 TON Security Assessment
CONFIDENTIAL



return {time >= 0 ? time : 0, gas_limit.gas_consumed(), ret};
} catch (...) {
LOG(FATAL) << "catch unhandled exception";
return {-1, -1, 1};

}
}

runtimeStats averageRuntime(td::Slice command) {
const size_t samples = 5000;
runInfo total;
std::vector<runInfo> values;
values.reserve(samples);
for(size_t i=0; i<samples; ++i) {
const auto value = time_run_vm(command);
values.push_back(value);
total += value;

}
const auto runtimeMean = total.runtime / static_cast<long double>(samples);
const auto gasMean = static_cast<long double>(total.gasUsage) / static_cast<long

double>(samples);
long double runtimeDiffSum = 0.0;
long double gasDiffSum = 0.0;
bool errored = false;
for(const auto value : values) {
const auto runtime = value.runtime - runtimeMean;
const auto gasUsage = static_cast<long double>(value.gasUsage) - gasMean;
runtimeDiffSum += runtime * runtime;
gasDiffSum += gasUsage * gasUsage;
errored = errored || value.errored();

}
return {

{runtimeMean, sqrt(runtimeDiffSum / static_cast<long double>(samples))},
{gasMean, sqrt(gasDiffSum / static_cast<long double>(samples))},
errored

};
}

runtimeStats timeInstruction(const std::string& setupCode, const std::string& toMeasure) {
const auto setupCodeTime = averageRuntime(setupCode);
const auto totalCodeTime = averageRuntime(setupCode + toMeasure);
return {
{totalCodeTime.runtime.mean - setupCodeTime.runtime.mean, totalCodeTime.runtime.stddev},
{totalCodeTime.gasUsage.mean - setupCodeTime.gasUsage.mean, totalCodeTime.gasUsage.stddev}

};
}

int main(int argc, char** argv) {
if(argc != 2 && argc != 3) {
std::cerr << "Usage: " << argv[0] <<

" [TVM_SETUP_BYTECODE_HEX] TVM_BYTECODE_HEX" << std::endl << std::endl;
return 1;

}
std::cout << "OPCODE,runtime mean,runtime stddev,gas mean,gas stddev" << std::endl;
timingBaseline = averageRuntime("").runtime.mean;
std::string setup, code;
if(argc == 2) {
setup = "";
code = argv[1];

} else {
setup = argv[1];

Trail of Bits 62 TON Security Assessment
CONFIDENTIAL



code = argv[2];
}
const auto time = timeInstruction(setup, code);
std::cout << code << "," << time.runtime.mean << "," << time.runtime.stddev << "," <<

time.gasUsage.mean << "," << time.gasUsage.stddev << std::endl;
return 0;

}

Figure H.1: Utility for timing opcodes.

Trail of Bits 63 TON Security Assessment
CONFIDENTIAL


