
Designing the TVM side of the TON Trustless

Bridge system smart contracts and exploring

zk-proofs for verifying validator signatures

by RSquad Blockchain Lab on behalf of TON Foundation

v1.1, 15 May 2023

Contents

1 Ethereum light clients overview 2
1.1 Introduction on how Ethereum 2.0 light clients work 2
1.2 What is Sync Committee and how does it work? 3
1.3 How does verification occur? . 3
1.4 How does synchronization occur? 4
1.5 Specifics on the working process. 5

2 Architectural design approach 6
2.1 Smart Contract ”Ethereum Light Client” 6
2.2 Smart Contract ”Bridge” . 7
2.3 Smart Contract ”Adapter” . 8
2.4 Additional Information . 8

3 List of improvements for TVM 9
3.1 Merkleization . 9
3.2 Signature Verification and Curve Operations 11

3.2.1 Full BLS Support in TVM (Preferred Option) 11
3.2.2 Only Necessary Functions 12
3.2.3 Only primitives . 12

4 Utilizing BLS to optimize delivery of TON validator signatures. 13
4.1 Problem . 13
4.2 Overview of the subject area . 13
4.3 BLS . 14
4.4 ZK-SNARKs . 15

1

1. Ethereum light clients overview

1 Ethereum light clients overview

1.1 Introduction on how Ethereum 2.0 light clients work

Light clients are essential components in blockchain ecosystems as they enable
users to access and interact with a blockchain in a secure and decentralized
way, without having to synchronize the full blockchain. A light client or light
node is a software program that connects to full nodes to interact with the
blockchain. Unlike full nodes, light nodes do not need to run continuously or
read and write extensive amounts of data from the blockchain. Instead, they
rely on full nodes as intermediaries. Light clients use full nodes for various
operations, from requesting the latest headers to inquiring about an account’s
balance. The design of light client protocols allows them to interact with full
nodes in a trust-minimized manner.

In particular, Sync Committees are an important feature for Ethereum light
clients introduced with the Shanghai upgrade. Sync Committees are groups of
full nodes that are selected at random intervals to generate and share block
headers. These headers are then verified by light clients to ensure that they
are valid and that the full nodes are honest. This process allows light clients
to obtain information about the blockchain in a trust-minimized way, without
relying on a single trusted source. Instead, they can verify information from
multiple sources and make informed decisions based on the consensus of the
network.

Figure 1: Light client follows to learn about more recent blocks

Figure 1 illustrates the basic procedure that a light client follows to learn
about more recent blocks. As new blocks are added to the blockchain, the full
nodes in the Sync Committee generate headers for these blocks and share them
with the other full nodes in the committee. The light client then requests these
headers from one or more full nodes and verifies them to ensure their validity.
This process allows the light client to stay up to date with the latest blocks

2

1. Ethereum light clients overview

while minimizing the amount of data it needs to synchronize.

1.2 What is Sync Committee and how does it work?

The recent Altair upgrade includes a key feature designed to support light client
syncing called the sync committee. This committee of 512 validators is randomly
selected every sync committee period (approximately 1 day) and is responsible
for continually signing the block header that is the new head of the chain at
each slot. The purpose of the sync committee is to allow light clients to keep
track of the chain of beacon block headers.

The sync committee is updated infrequently and saved directly in the beacon
state, which allows light clients to verify the sync committee with a Merkle
branch from a block header they already know about. They can then use the
public keys in the sync committee to directly authenticate signatures of more
recent blocks. This function is critical for light clients to authenticate block
headers since computing the proposer or attesters at a given slot requires a
calculation on the entire active validator set, which light clients do not have
access to.

Assuming a light client already has a block header at slot N , in period
X = N

16384 , and wants to authenticate a block header somewhere in period
X + 1, the light client follows these steps:

1. Use a Merkle branch to verify the next_sync_committee in the slot N
post-state. This is the sync committee that will be signing block headers
during period X + 1.

2. Download the aggregate signature ofthe newer header that the light client
is trying to authenticate.

3. Add together the public keys of the subset of the sync committee that
participated in the aggregate signature (the bitfield in the signature will
tell you who participated).

4. Verify the signature against the combined public key and the newer block
header. If verification passes, the new block header has been successfully
authenticated!

The minimum cost for light clients to track the chain is only about 25 kB
per two days, which is the size of the sync committee and a few other necessary
bytes. This low cost is intended to make the beacon chain light client-friendly
for extremely constrained environments, such as mobile phones, embedded IoT
devices, in-browser wallets, and other blockchains.

1.3 How does verification occur?

To begin, a light client must obtain the block headers of the blockchain. When
making requests to a full node, the light client need not trust it completely.

3

1. Ethereum light clients overview

Block headers contain a Merkle tree root, which acts like a unique identifier
for all blockchain data concerning account balances and smart contract storage.
Even the slightest change in the data will alter the fingerprint. Assuming that
most miners are honest, the block headers and their fingerprints are deemed
valid. While a light client may need to request information, such as an account’s
balance, from a full node, it can verify the information’s authenticity using the
fingerprints for each block. This provides a powerful means to authenticate
information without prior knowledge of it.

1.4 How does synchronization occur?

A light node can synchronize with a blockchain much faster than a full node as
it requires only a fraction of the information. While it takes about an hour to
synchronize the entire Ethereummainnet blockchain with a light client, anything
more than a couple of seconds would be too much for any application. To
enable quick syncing with the top of the blockchain, light clients have a trusted
blockchain checkpoint built into their code. This checkpoint allows the client
to download only the latest headers, resulting in a sync that takes just a few
seconds. While this tradeoff requires users to trust the client developers to
integrate a valid checkpoint, it is considered acceptable as users already need to
trust the developers for the client implementation.

The sync protocol is essential for light clients, and the following details
explain how it functions:

• The sync committee is a subset of validators attests to block N − 1 in
every block N chosen from existing Ethereum validators.

• This subset of validators only rotates every approx. 27 hours, chosen as a
happy medium between data load and opportunity to corrupt committee
members.

• The sync committee is a relatively large and conservative size of 512 val-
idators out of the approx. 138,000 currently on mainnet to ensure safety.

• The current and next sync committee is included on-chain.

• The light client syncs by tracking each sync committee across time, sync-
ing forward committee by committee and ensuring that each committee
handoff has a 2

3 vote that verifies the next.

• Sync committee participants attest to the current state of the chain, specif-
ically the previous block, and these attestations are aggregated into a sin-
gle signature named ”SyncAggregate”. This signature is included in every
new block, verifying its predecessor. It is different from ”Attestations”
put on chain via beacon committees.

Instead of initializing the node with the entire beacon state, the light client
downloads a historical block header and the current and next sync committee at

4

1. Ethereum light clients overview

that block. It can then download and track the current and next sync committee
instead of the entire validator set. Finally, the light client can progress the chain
by downloading only the last SyncAggregate from a sync committee (with 2

3 of
the committee signed) and a merkle proof to the next sync committee.

1.5 Specifics on the working process.

The working process of the light client involves the use of a REST API to
fetch updates and request proofs. This process consists of three endpoints that
provide functionality to get historical sync updates, get the latest sync update,
and get multi-proofs for a beacon state. These endpoints create sync update
objects and multi-proofs from beacon states, respectively. The REST API aims
to become the new standard for light clients in Eth2, and its consensus is sought.

The light client can be initialized from a trusted state root or a trusted snap-
shot after startup. Once initialized, it requests updates from its current synced
position up to the finalized state. The light client also exposes functionality to
request proofs verified against the currently synced state root.

To retrieve the necessary data, the light client calls the eth_getProofmethod
from the RPC provider. The beacon node implementation, which facilitates
Phase 0 of the Ethereum consensus layer, exposes this API. The data obtained
from this API is in JSON format.

All of Ethereum’s execution layer’s Merkle trees use a Merkle Patricia tree.
From a block header, there are three roots from three of these trees: stateRoot,
transactionsRoot, and receiptsRoot. Verification algorithms are used to
verify the validity of the data.

In terms of data storage, the light client implements Verkle tree ”Stateless”
State Management and Proof Verification. The support for Verkle tree is not
yet implemented, but it is planned for the architecture. Additionally, the light
client supports EIP-4844 Shard Blob Transactions Spec Finalization, and the
list of supported transaction types according to EIP-2718 is limited to two, so
the addition of new transaction types does not affect it. The status of these
updates can be implemented in testnets before moving to the mainnet.

5

2. Architectural design approach

2 Architectural design approach

Within the subsystem, smart contracts need to be developed. The basic struc-
ture consists of three types of contracts:

1. Ethereum Light Client

2. Bridge

3. Adapters

2.1 Smart Contract ”Ethereum Light Client”

A light client stores the latest known state of Ethereum and the logic of up-
dating this state. Essentially, the smart contract stores the current state of the
blockchain without a detailed history and has a method update for verifying
and updating this state.

Here’s how the state is stored and updated1:
A light client maintains its state in a store object of type LightClientStore

and receives update objects of type LightClientUpdate. Every update trig-
gers process_light_client_update(store, update, current_slot) where
current_slot is the current slot based on some local clock.

The LightClientSnapshot represents the light client’s view of the most
recent block header that the light client is convinced is securely part of the
chain. The light client stores the header itself, so that the light client can
then ask for Merkle branches to authenticate transactions and state against the
header. The light client also stores the current and next sync committees, so
that it can verify the sync committee signatures of newer proposed headers.

class LightClientSnapshot(Container):

Beacon block header

header: BeaconBlockHeader

Sync committees corresponding to the header

current_sync_committee: SyncCommittee

next_sync_committee: SyncCommittee

class LightClientStore(object):

snapshot: LightClientSnapshot

valid_updates: Set[LightClientUpdate]

class LightClientUpdate(Container):

Update beacon block header

header: BeaconBlockHeader

1https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.

md

6

https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md

2. Architectural design approach

Next sync committee corresponding to the header

next_sync_committee: SyncCommittee

next_sync_committee_branch:

Vector[Bytes32 , floorlog2(NEXT_SYNC_COMMITTEE_INDEX)]

Finality proof for the update header

finality_header:

BeaconBlockHeader

finality_branch:

Vector[Bytes32 , floorlog2(FINALIZED_ROOT_INDEX)]

Sync committee aggregate signature

sync_committee_bits: Bitvector[SYNC_COMMITTEE_SIZE]

sync_committee_signature: BLSSignature

Fork version for the aggregate signature

fork_version: Version

The snapshot can be updated in two ways:

1. If the light client sees a valid LightClientUpdate containing a
finality_header, and with at least 2

3 of the sync committee partici-
pating, it accepts the update.header as the new snapshot header. Note
that the light client uses the signature to verify update.finality_header

(which would in practice often be one of the most recent blocks, and not
yet finalized), and then uses the Merkle branch from the
update.finality_header to the finalized checkpoint in its post-state to
verify the update.header. If update.finality_header is a valid block,
then update.header actually is finalized.

2. If the light client sees no valid updates via method for a sufficiently long
duration (specifically, the length of one sync committee period), it simply
accepts the speculative header in valid_updates with the most signatures
as finalized.

To reduce the amount of data stored in the smart contract, it will be nec-
essary to shorten the stored data. For example, there is no point in storing
unsigned and incorrect updates. Therefore, valid updates can be finalized di-
rectly into the snapshot.

2.2 Smart Contract ”Bridge”

The smart contract receives events from Ethereum and additional information.
It then passes them to the light client for verification, and upon successful
verification (proof that the event was actually included in the transaction in an
Ethereum block), it passes the data for execution to the Adapter smart contract.

7

2. Architectural design approach

2.3 Smart Contract ”Adapter”

The smart contract performs an action (such as minting a token) based on its
code and the data passed to it. It works on the same principle as Adapter smart
contracts in Ethereum. This is necessary in order to expand the functionality
of the bridge for any operation.

2.4 Additional Information

In Ethereum, there are four trees, such as the transaction tree, which stores
what the client signed and sent, which is not necessary for solving the prob-
lem. We only need the receiptsRoot, which is a Merkle tree with receipts.
Through it, we can prove the result of the event (since logs or events are based
on the TransactionReceipts, the only way to prove them is by proving the
TransactionReceipt each event belongs to).

verifyMerkleProof(

Root

blockHeader.transactionReceiptRoot ,

Key or Path

keccak256(proof.txIndex),

Serialized nodes starting with the root -node

proof.merkleProof ,

expected value

transactionReceipt

)

8

3. List of improvements for TVM

3 List of improvements for TVM

This section provides a list of potential improvements to the TVM (TON Virtual
Machine) that may be required to implement the TON Trustless Bridge. These
enhancements are focused on the verification of Sync Committee signatures
from Ethereum to validate a block. The following subsection also outlines the
necessary steps for verifying the signatures.

3.1 Merkleization

The SSZ specification2 provides guidelines for breaking down data into chunks
for storage on a blockchain, as observed in Ethereum 2.0, to facilitate processing
by the Ethereum Virtual Machine (EVM).

For TON Trustless bridge important to support the ability to perform merkleiza-
tion is essential to derive a hash from a merkle tree for validating the correctness
of event’s signature in a user-transmitted block.

The excerpt from the specification mentioned below outlines the necessary
functionality. It is worth noting that the functions are not mandatory to im-
plement, but their inclusion in the TVM (TON Virtual Machine) would signif-
icantly reduce development and gas costs.

Note: The functions presented below are optional; however, they are desir-
able. Although the required functionality can be achieved using FunC, integrat-
ing these functions into TVM would considerably lower development and gas
expenses.

We first define helper functions:

• size_of(B), where B is a basic type: the length, in bytes, of the serialized
form of the basic type.

• chunk_count(type): calculate the amount of leafs for merkleization of
the type.

– all basic types: 1

– Bitlist[N] and Bitvector[N]: N+255
256 (dividing by chunk size, round-

ing up)

– List[B, N] and Vector[B, N], where B is a basic type: (N∗size of(B)+31)
32

(dividing by chunk size, rounding up)

– List[C, N] and Vector[C, N], where C is a composite type: N

– containers: len(fields)

• pack(values): Given ordered objects of the same basic type:

1. Serialize values into bytes.

2https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#

merkleization

9

https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization
https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization

3. List of improvements for TVM

2. If not aligned to a multiple of BYTES_PER_CHUNK bytes, right-pad
with zeroes to the next multiple.

3. Partition the bytes into BYTES_PER_CHUNK-byte chunks.

4. Return the chunks.

• pack_bits(bits): Given the bits of bitlist or bitvector, get
bitfield_bytes by packing them in bytes and aligning to the start. The
length-delimiting bit for bitlists is excluded. Then return
pack(bitfield_bytes).

• next_pow_of_two(i): get the next power of 2 of i, if not already a power
of 2, with 0 mapping to 1. Examples:
0->1, 1->1, 2->2, 3->4, 4->4, 6->8, 9->16

• merkleize(chunks, limit=None): Given ordered BYTES_PER_CHUNK-byte
chunks, merkleize the chunks, and return the root:

– The merkleization depends on the effective input, which must be
padded/limited:

∗ if no limit: pad the chunks with zeroed chunks
to next_pow_of_two(len(chunks)) (virtually for memory effi-
ciency).

∗ if limit >= len(chunks), pad the chunks with zeroed chunks
to next_pow_of_two(limit) (virtually for memory efficiency).

∗ if limit < len(chunks): do not merkleize, input exceeds limit.
Raise an error instead.

– Then, merkleize the chunks (empty input is padded to 1 zero chunk):

∗ If 1 chunk: the root is the chunk itself.

∗ If > 1 chunks: merkleize as binary tree.

• mix_in_length: Given a Merkle root root and a length length

("uint256" little-endian serialization) return hash(root + length).

• mix_in_selector: Given a Merkle root root and a type selector selector
("uint256" little-endian serialization) return hash(root + selector).

We now define Merkleization hash_tree_root(value) of an object value

recursively:

• merkleize(pack(value)) if value is a basic object or a vector of basic
objects.

• merkleize(pack bits(value), limit=chunk count(type)) if value is
a bitvector.

• mix in length(merkleize(pack(value), limit=chunk count(type)),

len(value)) if value is a list of basic objects.

10

3. List of improvements for TVM

• mix in length(merkleize(pack bits(value), limit=chunk count(type)),

len(value)) if value is a bitlist.

• merkleize([hash tree root(element) for element in value]) if value
is a vector of composite objects or a container.

• mix in length(merkleize([hash tree root(element) for element in

value], limit=chunk count(type)), len(value)) if value is a list of
composite objects.

• mix in selector(hash tree root(value.value), value.selector) if
value is of union type, and value.value is not None

• mix in selector(Bytes32(), 0) if value is of union type, and value.value
is None

3.2 Signature Verification and Curve Operations

To work with Sync Committees in TON Trustless Bridge, BLS is required.
There are three possible options for BLS support.

3.2.1 Full BLS Support in TVM (Preferred Option)

Ideally, TON Trustless Bridge would have full BLS support, which would pro-
vide access to the entire BLS interface within TVM (except Sign). With full
BLS support, TON developers could implement intended functionality and have
expanded capabilities.

Ethereum uses BLS signatures as specified in the IETF draft BLS spec-
ification draft-irtf-cfrg-bls-signature-023 but with Hashing to Elliptic
Curves - draft-irtf-cfrg-hash-to-curve-074 instead of
draft-irtf-cfrg-hash-to-curve-06. The following interfaces are implemented
with the BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_ ciphersuite:

• def Sign(

SK: int,

message: Bytes

) -> BLSSignature // optional

• def Verify(

PK: BLSPubkey,

message: Bytes,

signature: BLSSignature

) -> bool

• def Aggregate(

signatures: Sequence[BLSSignature]

) -> BLSSignature

3https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-02
4https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-07

11

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-02
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-07

3. List of improvements for TVM

• def FastAggregateVerify(

PKs: Sequence[BLSPubkey],

message: Bytes,

signature: BLSSignature

) -> bool

• def AggregateVerify(

PKs: Sequence[BLSPubkey],

messages: Sequence[Bytes],

signature: BLSSignature

) -> bool

3.2.2 Only Necessary Functions

For the TON Trustless Bridge to work with Ethereum Sync Committee, only
the FastAggregateVerify5 function is required. If an implementation of this
function is available, nothing else is required in the context of the current task.

// BLS12-381

FastAggregateVerify((PK_1, ..., PK_n), message, signature)

3.2.3 Only primitives

In this case, functions for pairing, addition, and multiplication operations are
required to implement FastAggregateVerify or the entire BLS on FunC (pair-
ing may be optional). So there is no FastAggregateVerify, the analogs of
ECADD, ECMUL, and pairing check precompiled contracts on the alt bn128 el-
liptic curve6 are required.

5https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-02#

section-3.3.4
6https://eips.ethereum.org/EIPS/eip-1108

12

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-02#section-3.3.4
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-02#section-3.3.4
https://eips.ethereum.org/EIPS/eip-1108

4. Utilizing BLS to optimize delivery of TON validator signatures.

4 Utilizing BLS to optimize delivery of TON
validator signatures.

4.1 Problem

In the Ethereum part of the TON Trustless Bridge system, one of the use cases
involves sending TON validator signatures to prove blocks directly in Ethereum.

The goal is to aggregate these signatures, using BLS or other methods, as
ed21559 does not support non-interactive aggregation, with the aim of optimiz-
ing gas costs when performing iterations.

4.2 Overview of the subject area

The signatures used in TON are Ed25519-signatures generated with a validator’s
private keys of the sha256 of the concatenation of the 256-bit representation hash
of the block and its 256-bit serialization hash blk_serialize_hash. The 64-bit
keys in dictionary signatures represent the first 64 bits of the public keys of the
corresponding validators7.

TON utilizes two forms of elliptic curve cryptography: Ed25519 is used
for cryptographic Schnorr signatures, while Curve25519 is used for asymmetric
cryptography. These curves are used in the standard way. One unique adap-
tation of these curves for TON is that TON supports automatic conversion of
Ed25519 keys into Curve25519 keys, so that the same keys can be used for sig-
natures and for asymmetric cryptography8. Another source confirms that TON
uses EDDSA ed25519 curve signature verification9.

ECDSA stands for Elliptic Curve Digital Signature Algorithm, and EdDSA
stands for Edwards-curve Digital Signature Algorithm. Both are used to create
digital signatures.

The Edwards-curve Digital Signature Algorithm (EdDSA) is used to create
a digital signature using an enhancement of the Schnorr signature with Twisted
Edwards curves. One example of EdDSA is Ed25519, which is based on Curve
25519. It provides around 128-bit security and generates a 64-byte signature
value of (R,s). Along with this, it has 32-byte values for the public and private
keys.

ECDSA signatures change each time based on the nonce used, whereas Ed-
DSA signatures do not change for the same set of keys and the same message.
ECDSA public keys are (x,y) coordinates and thus have 512 bits (for secp256k1),
while Ed25519 uses only the y-coordinate value for the point, and thus has 256
bits.

In theory, optimizing the algorithm for verifying a large number of signatures
in TON can be achieved by caching intermediate results to avoid recomputing
them for each signature. This means that verifying a set of 64 signatures allows

7https://ton.org/tblkch.pdf (5.1.8. Signed shardchain block)
8https://ton.org/tblkch.pdf (Appendix A. Elliptic curve cryptography)
9https://medium.com/orbit-chain/orbit-bridge-now-supports-ton-network-c421c32c46b0

13

https://ton.org/tblkch.pdf
https://ton.org/tblkch.pdf
https://medium.com/orbit-chain/orbit-bridge-now-supports-ton-network-c421c32c46b0

4. Utilizing BLS to optimize delivery of TON validator signatures.

developers to save time by storing intermediate results in registers and reusing
them in the next iterations.

4.3 BLS

Schnorr signatures are great, but the BLS signatures are even better and newer.
If we implement BLS signatures correctly, we can combine all signatures and
public keys in a transaction into a single key and signature, and nobody will
be able to identify multiple keys. Additionally, block validation can be faster
since we can validate all signatures at once. However, there are some issues with
Schnorr signatures that the BLS signatures can solve:

• A multisig scheme requires several communication rounds, which can be
inconvenient with cold storage.

• With signature aggregation, we have to rely on a random number gener-
ator. In ECDSA, we can choose a random point R deterministically, but
not in signature aggregation.

• The m-of-n multisig scheme is complex. We need to create a merkle tree
of public keys, which can be large for large values of m and n.

• We can’t combine all signatures in the block to a single signature.

BLS signatures can fix all of these issues. We don’t need random numbers
at all, and we can combine all signatures in the block into a single signature.
The m-of-n multisig is also straightforward, and we don’t need several commu-
nication rounds between signers. Moreover, BLS signatures are twice as short
as Schnorr or ECDSA signatures. This is because the BLS signature is a single
curve point, rather than a pair. This feature is critical to the scheme.

One great thing about the BLS scheme is that we don’t need several commu-
nication rounds between devices. We just need to know who the other signers
are, and we’re all set. This is much simpler than the 3-round multisig scheme
required for Schnorr signatures. Additionally, BLS signatures are a completely
deterministic signature algorithm, so they don’t rely on any randomness.

The extra structure provided by the bilinear map allows us to construct
an efficient aggregate signature scheme. However, we cannot build efficient
aggregate signatures from general gap groups.

Therefore, we cannot use existing ed25519 signatures for BLS aggregation.
For the formation of a multiparty signature, based on the first paragraph, it is
necessary to involve signers interactively with the transmission of relatively large
amounts of data (public keys and random big numbers for each signer). Thus,
even implementing such a scheme in TON and forcing validators to participate
in this would not be expedient (it is better to switch to BLS immediately). Also,
we cannot use existing signatures because they are not curve points, and the
curve is different. Therefore, even if we come up with a way to aggregate public
keys on this curve, we won’t be able to aggregate signatures.

14

4. Utilizing BLS to optimize delivery of TON validator signatures.

Since we cannot change the validator’s working scheme, we need to look for a
solution using ZK-SNARKs. Here, we need to construct a mathematical proof
of the existence of valid signatures in such a way that verifying the proof of
50-100 signatures is cheaper than verifying the signatures themselves.

4.4 ZK-SNARKs

In the hypothesis, it’s possible to verify EdDSA signatures using SNARKs.
A brief overview of the technology is provided below (for verifying a single
signature).

To verify an EdDSA signature, you need the signer’s public key and the
signature. The public key is a tuple (x,y) that represents a point on the twisted
Edward curve, and it includes the parameters of the curve. The signature is a
tuple (R,S), where R is a point on the curve, and S is a scalar used to perform
a scalar multiplication on the curve.

The signature verification involves checking the following relation:

[2c ∗ S]G = [2c]R+ [2cH(R,A,M)]A

where G is the base point of the twisted Edward curve, k is the secret key of
the signer, A is its public key, and H is the hash function used for signing. The
variable c is either 2 or 3, depending on the twisted Edwards curve.

zk-SNARKs cannot be directly applied to any computational problem; you
need to convert the problem into a ”quadratic arithmetic program” (QAP),
which is a highly nontrivial transformation. You also need a witness to the
QAP, which corresponds to the input of the code. After that, you need to
create the zero-knowledge proof for this witness, and a separate process for
verifying a proof.

The QAP is converted into a rank-1 constraint system (R1CS), which is a
sequence of groups of three vectors (a, b, c). The solution to an R1CS is a vector
s that satisfies the equation s.a ∗ s.b− s.c = 0.

There are many different algorithms for implementation, the most popular
one being Groth16, invented in 2016, but it is currently not the most efficient.
Below is a list of algorithms that can be used to solve the problem:

• Groth1610: Groth16 is currently the fastest and smallest data-volume zk-
SNARK being used in Zcash, etc. CRS of Groth16 is not universal and
its settings need to be bound to a specific circuit. It is often used by new
zk-SNARKs to compare performance because of its speed and the small
amount of data it proves.

• Sonic11: Sonic is an early universal zk-SNARK protocol that supports
universal and upgradeable reference strings. The paper was published
in January 2019. Sonic has a fixed proof size but high verification cost,
which theoretically allows multiple proofs to be verified in batches for

10https://eprint.iacr.org/2016/260
11https://eprint.iacr.org/2019/099

15

https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2019/099

4. Utilizing BLS to optimize delivery of TON validator signatures.

better performance. Many of the new zk-SNARKs listed below are based
on Sonic.

• Fractal12: Fractal is a zk-SNARK that allows recursion. The transparent
setup is achieved by preprocessing the circuit. The maximum size of the
proof is 250KB, which is much larger than the proofs generated by other
builds.

• Halo13: Halo supports recursive evidence organization without trusted
settings, and unlike other new zk-SNARK builds, Halo’s verification time
is linear.

• SuperSonic14: An improved version of Sonic, the first transparent zk-
SNARK that is practical in terms of verification time and proof data
volume.

• Marlin15: An improved version of Sonic, the proof time is reduced by 10
times, and the verification time is reduced by 4 times.

• Plonk16: An improved version of Sonic, the proof time is reduced by 5
times.

Conclusion — this approach requires a deeper study of possible protocols
and test implementation, which is a separate object for research. For now, we
can focus on optimizing the caching of intermediate calculations during EdDSA
signature verification, which can help optimize verification and bring system
resource consumption to acceptable values.

12https://eprint.iacr.org/2019/1076
13https://eprint.iacr.org/2019/1021
14https://eprint.iacr.org/2019/1229
15https://eprint.iacr.org/2019/1047
16https://eprint.iacr.org/2019/953

16

https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/953

	Ethereum light clients overview
	Introduction on how Ethereum 2.0 light clients work
	What is Sync Committee and how does it work?
	How does verification occur?
	How does synchronization occur?
	Specifics on the working process.

	Architectural design approach
	Smart Contract "Ethereum Light Client"
	Smart Contract "Bridge"
	Smart Contract "Adapter"
	Additional Information

	List of improvements for TVM
	Merkleization
	Signature Verification and Curve Operations
	Full BLS Support in TVM (Preferred Option)
	Only Necessary Functions
	Only primitives

	Utilizing BLS to optimize delivery of TON validator signatures.
	Problem
	Overview of the subject area
	BLS
	ZK-SNARKs

